

Disfunción del sistema inmune asociada a la cirrosis

Agustín Albillos

Hospital Universitario Ramón y Cajal, IRYCIS, Universidad de Alcalá, CIBERehd, Madrid

Clinical evidences of immunodeficiency in cirrhosis

V Arvanity et al. Gastroenterology 2010 J Bajaj et al. Hepatology 2012

MÁSTER EN HEPATOLOGÍA J Fernández et al. Gut 2018

DH Van Thiel et al. Dig Dis Sci 1992

EB Keeffe et al. Hepatology 1999

Cirrhosis-associated immune dysfunction (CAID): the impairment of the immune system in cirrhosis

Cirrhosis-associated immune dysfunction (CAID)

Agenda

Concept and phenotypes

Systemic inflammation

Immunodeficiency

Cirrhosis-associated immune dysfunction: Phenotypes

MÁSTER EN

A Albillos et al. JHEP 2014

Cirrhosis-associated immune dysfunction (CAID): dynamics and phenotypes

A Albillos, R Martin et al. NRGH 2021

Cirrhosis-associated immune dysfunction (CAID)

Agenda

Concept and phenotypes

Systemic inflammation

Immunodeficiency

Evidences of systemic inflammation in cirrhosis

		Compensated and decompensated cirrhosis*	ACLF
Soluble molecules (serum)	Acute phase proteins	↑CRP, ↑LBP	↑↑↑ CRP
	Pro-inflammatory cytokines	↑TNF, IL-1b, IL-6, IL-17, MCP-1, MIP-1b	↑↑↑ Pro-/Anti- inflammatory cytokines
	Endothelial activation	↑ICAM-1, VCAM, VEGF ↑Nitrates/nitrites	↑↑ VEGF
Immune cells	Neutrophil activation	↑Respiratory burst ↑CD11b	
	Monocyte activation	<pre>↑HLA-DR expression ↑CD80/CD86 expression ↑TNF production</pre>	↑↑ CD163 in serum
	T-lymph activation	Th1 polarization ↑IFNγ production	
	B-lymph activation	↑HLA-DR expression	

* Intensity of the abnormalities correlates with the severity of cirrhosis

The intensity of systemic inflammation parallels cirrhosis progression

Pro-inflammatory cytokines in serum of patients with compensated and decompensated cirrhosis

	Healthy controls (n=30)	Cirrhotic patients w/o ascites (n=31)	Cirrhotic patients with ascites (n=71)	
			Normal LBP (n=41)	High LBP (n=30)
Endotoxin (EU/ml)	0.29 ± 0.04	0.34 ± 0.03	0.37 ± 0.03	$0.68 \pm 0.06^{*}$
sCD14 (ng/ml)	1384 ± 138	1498 ± 132	1552 ± 98	2676 ± 104*
TNF-α (pg/ml)	1.74 ± 0.4	3.81±0.3*	$5.34 \pm 0.4^{*}$	8.5 ± 0.5*
IL-6 (pg/ml)	3.1 ± 0.5	11.2 ± 0.9*	16.3 ± 1.5*	31.6 ± 1.6*
sTNF-RI (pg/ml)	818 ± 56	1158 ± 68	1510 ± 88*	2442 ± 354*

Heat-map of systemic inflamation biomarkers in patients with cirrhosis and acute decompensation

* P<0.01 vs. controls

A Albillos et al. Hepatology 2003

J Trebicka et al. Front Immunol 2019

Mechanisms of inflammasome activation in compensated and decompensated cirrhosis

DIGESTIVO RAMON Y CAJAL MADRID

Enteric bacterial products drive low-grade systemic inflammation in decompensated cirrhosis: Role of activated monocytes

Pro-inflammatory cytokines in serum of patients with compensated and decompensated cirrhosis

Cirrhosis with ascites

TNF α in serum

A Albillos et al. Hepatology 2003

A Albillos et al. JHEP 2004

Pathogenesis and consequences of low-grade systemic inflammation

HEPATOLOGÍA

A Albillos et al. NRGH 2021

Portal hypertension, circulatory dysfunction and systemic inflammation as drivers of cirrhosis progression

DIGESTIVO RAMON Y CAJAL MADRID

Universidad de Alcalá

Acute decompensation in cirrhosis: three clinical courses **PREDICT** study

1071 patients with cirrhosis with <u>acute</u> decompensation (w/o organ failure) Follow-up <u>3 months</u> and 1 year after the event

12 (6; 26) Pre-ACLF

14 (10; 24) UDC

60

p = 0.04

20 (11; 41) SDC

90

p = 0.01

J Trebicka et al. JHEP 2020

30

Months

C-reactive protein

Surrogate of severe portal hypertension

Pathogenesis of non-HRS-AKI in ACLF

High-grade systemic inflammation in ACLF: relationship with the number of organ failures (ACLF grade)

Relationship between ACLF and inflammatory markers

Relationship between ACLF and inflammatory markers

	ACLF-I N = 126	ACLF-II N = 86	ACLF-III N = 25	P Value*
Markers of SCD Plasma renin concentration (microlU/mL)	169 (40-383)	114 (28-352)	87 (33-258)	0.771
PCC (pmol/L)	34 (16.62)	27 (13-45)	47 (11.134)	0.224
Proinflammatory cytokines				
$TNF\alpha$ (pg/mL)	30 (21-43)	26 (15-36)	32 (17-43)	0.029
IL-6 (pg/mL)	34 (18-96)	43 (13-106)	111 (32-355)	0.018
IL-8 (pg/mL)	62 (37-112)	97 (48-192)	144 (80-292)	<0.001
MCP-1 (pg/mL)	412 (299-633)	376 (277-646)	660 (322-1,773)	0.089
IP-10 (pg/mL)	1,218 (717-2,258)	1,162 (617-1,946)	1,689 (899-2,728)	0.267
MIP-1 β (pg/mL)	27 (18-43)	28 (19-55)	46 (20-61)	0.112
G-CSF (pg/mL)	32 (15-70)	29 (14-81)	39 (15-209)	0.673
GM-CSF (pg/mL)	6.8 (3.7-15.0)	7.5 (2.7-20.1)	11.3 (5.1-29.6)	
Anti-inflammatory cytokines				
IL-10 (pg/mL) IL-1ra (pg/mL)	4.3 (1.1-17.9) 17 (10-45)	15.3 (5.5-41.5) 26 (8-63)	12.4 (6.6-40.8) 49 (24-135)	<0.001 0.019
ic-nu (pynic)	17 (1040)	20 (0-00)	40 (24-100)	0.019

R Moreau et al. Gastroenterology 2013

J Claria et al. Hepatology 2017

Renal dysfunction is associated with markers of systemic inflammation in ACLF

Relationship between ACLF grade and response to terlipressin in HRS

Normal plasma renin concentration in 15% of AKI in ACLF

J Claria et al. Hepatology 2017

S Piano et al. CGH 2019

Pathogenesis of non-HRS-AKI in ACLF

DIGESTIVO

A distinctive blood metabolite fingerprint in ACLF uncovers inflammation-associated mitochondrial dysfunction

↑ lypolisys and proteolysis

DIGESTIVO RAMON Y CAJAL

MADRID

Universidad

Portal hypertension, circulatory dysfunction and systemic inflammation as drivers of cirrhosis progression

Drivers of cirrhosis progression

Cirrhosis-associated immune dysfunction (CAID)

Agenda

Concept and phenotypes

Systemic inflammation

Immunodeficiency

Cirrhosis-associated immune dysfunction (CAID): dynamics and phenotypes

Dysfunctional immune response in ACLF

imbalance and metabolic abnormalities of cirrhosis

R Martin et al. Front Immunol 2020

"Immunoparesis" of monocytes from patients with ACLF:

relationship with increased monocytes expressing the tyrosine kinase receptor, MERTK

Pharmacological regulation of metabolic programs partially restores dysfunction of monocytes in ACLF

Plasma from patients with cirrhosis induces phagocytic dysfunction in normal neutrophils

Phagocytic capacity of <u>normal</u> neutrophils after incubation with control or patient plasma

Neutrophil phagocytic capacity according to the severity of liver disease

MÁSTER EN

HEPATOLOGÍA

Expression of TLR4 by incubation of neutrophils with plasma

Reversal of impaired phagocytosis after incubation of neutrophils with endotoxin removed plasma

R Mookerjee et al. Hepatology 2007 G Tritto et al. JHEP 2011

Blockade of PD1 and TIM3 restores adaptative and innate immunity in acute alcoholic hepatitis

Antibodies against PD1 and TIM3 ...

... restored production of INF-γ by T-cells

... reduced IL-10 producing T-cells

... increased neutrophil antimicrobial activity

20 patients with AAH16 patients with advanced alcoholic cirrhosis

12 healthy controls

and TM3 via TLR4 binding to CD14+ monocytes

LJL Markwick et al. Gastroenterology 2015

Abnormalities of the peripheral blood T helper-cell compartment in cirrhosis

M Lario et al JHEP 2013

Modulation of cirrhosis-associated immune dysfunction Reversibility of the functional impairment of immune system cells in ACLF

MÁSTER EN HEPATOLOGÍA

A Albillos, R Martin et al. NRGH 2021

Cirrhosis-associated immune dysfunction (CAID)

• Low-grade SI (systemic inflammation) phenotype:

- increased expression of surface activation antigens in circulating immune cells
- increased production of pro-inflammatory cytokines
- subtle compromise of the effector immune response

• Progression to the decompensated state:

- mechanisms of CAID more pronounced \rightarrow persistent bacterial challenge \rightarrow
- \rightarrow impairment of the effector immune response
- incidental events \rightarrow worsening of the systemic circulatory dysfunction

• High-grade SI phenotype:

- High-grade SI \rightarrow multi-organ failure
- *plus* compensatory anti-inflammatory response and exhaustion of effector immune cells \rightarrow **severe immunodeficiency**

