

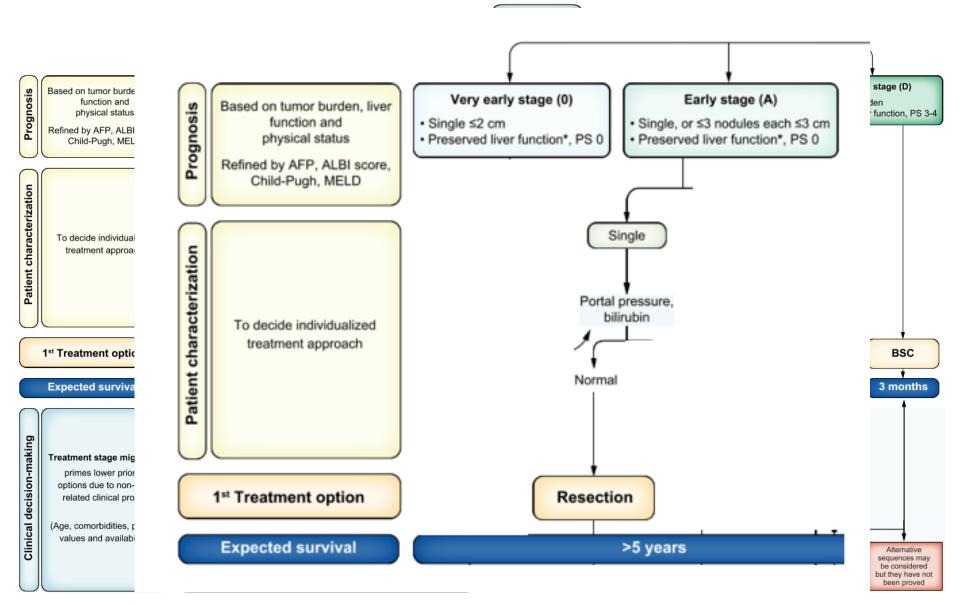
Asignatura: Hepatocarcinoma

"Criterios expandidos de resección y trasplante como tratamiento de rescate"

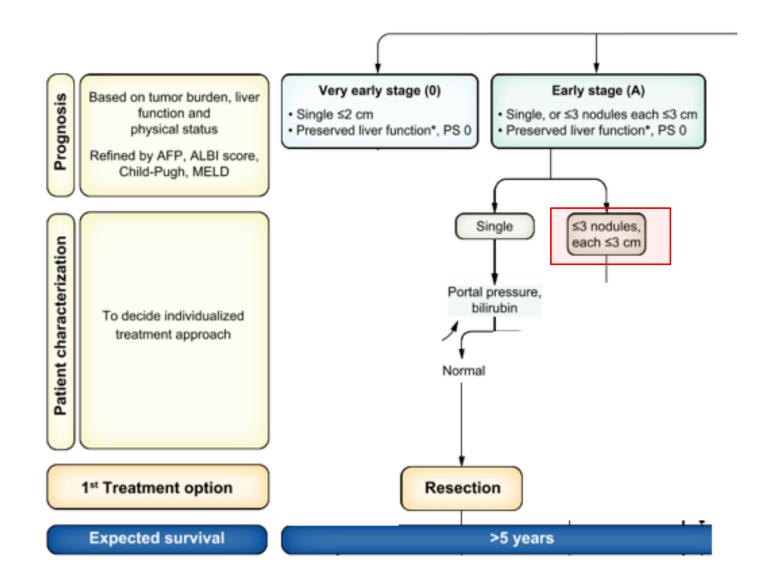
Alejandro Forner

BCLC Group. Liver Unit. Hospital Clínic. University of Barcelona

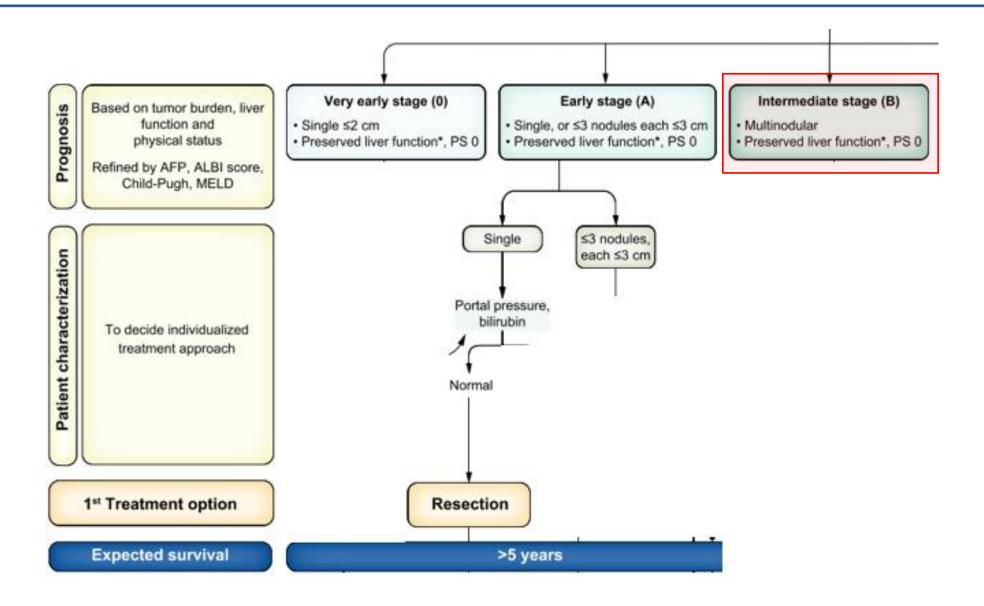
Agenda

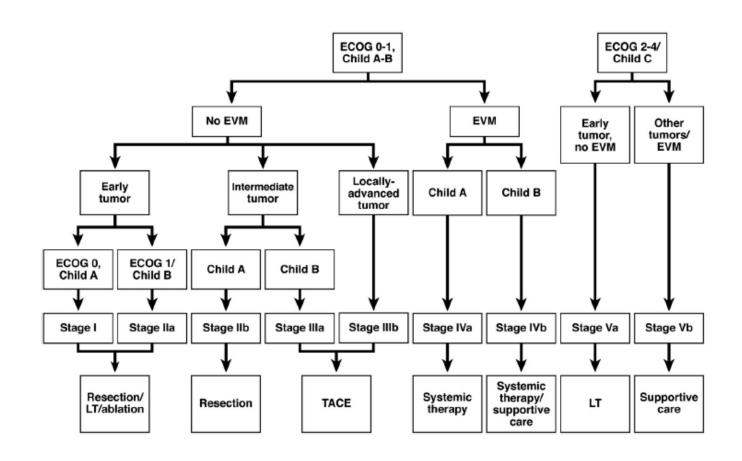

- Resection: Indications and challenging scenarios
- Liver transplantation: Where are the limits?
- Resection vs. Liver transplantation

Agenda



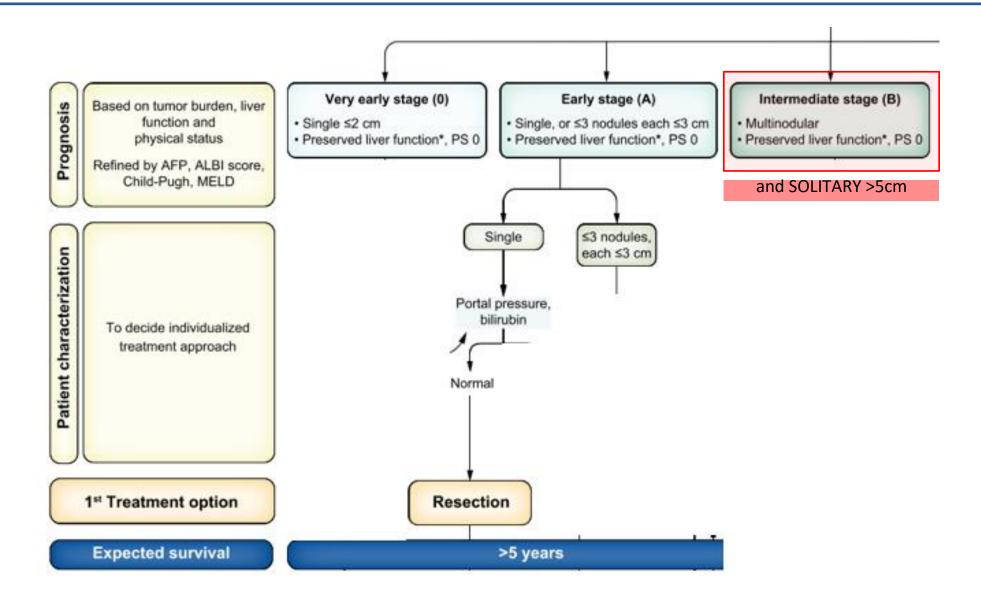
- Resection: Indications and challenging scenarios
- Liver transplantation: Where are the limits?
- Resection vs. Liver transplantation





Resection in intermediate HCC

Resection in intermediate HCC



Resection in intermediate HCC

• The problem of definition

Resection in intermediate HCC: the problem of definitions

When to Perform Hepatic Resection for Intermediate-Stage Hepatocellular Carcinoma

Alessandro Cucchetti, ¹ Benjamin Djulbegovic, ² Athanasios Tsalatsanis, ² Alessandro Vitale, ³ Iztok Hozo, ⁴ Fabio Piscaglia, ¹ Matteo Cescon, ¹ Giorgio Ercolani, ¹ Francesco Tuci, ³ Umberto Cillo, ³ and Antonio Daniele Pinna ¹

Table 1. Baseline Characteristics of Patients With Cirrhosis Undergoing Hepatic Resection for Intermediate HCC

Variable	In Study (n = 247)
Age, years	65 (57-71)
Male gender (%)	201 (81.4)
HBsAg ⁺ (%)	57 (23.1)
Anti-HCV ⁺ (%)	126 (51.0)
Mild ascites (%)	24 (9.7)
Presence of varices (%)	58 (23.5)
Serum albumin, g/dL	3.8 (3.4-4.0)
Total bilirubin, mg/dL	0.85 (0.59-1.25)
Platelet count, ×10 ³ /mmc	149 (105-218)
INR	1.13 (1.07-1.21)
Child-Pugh score	5 (5-6)
A5 (%)	141 (57.1)
A6 (%)	86 (34.8)
B7 (%)	18 (7.3)
B8 (%)	2 (0.8)
MELD score	8 (7-9)
Radiological tumor number	1 (1-2)
Single tumor (%)	124 (50.2)
Two or three tumors (%)	93 (37.7)
More than three tumors (%)	30 (12.1)
Radiological largest tumor size, cm	6.0 (5.0-7.7)
OS	
1 year (95% CI)	77.8% (72.1-82.6)
3 year (95% CI)	48.7% (41.4-55.5)
5 year (95% CI)	33.8% (26.2-41.5)

Continuous variables are reported as medians and IQRs (25th-75th percentiles).

Abbreviations: HBsAg, hepatitis B surface antigen; HCV, hepatitis C virus.

Curative treatments: Surgical Resection Resection in intermediate HCC: the problem of definitions

- The problem of definitions
- The problem of selection bias

"all of these retrospective comparisons were almost certainly associated with selection bias: the patients who were selected for resection instead of TACE probably had clinical characteristics that gave the surgeon confidence of a good outcome, whereas those selected for TACE likely lacked such features, immediately introducing a bias against TACE"

Resection in intermediate HCC: the problem of definitions

- The problem of definitions
- The problem of selection bias
- The problem of comparator

Resection in intermediate HCC: the problem of comparator

Partial hepatectomy vs. transcatheter arterial chemoembolization for resectable multiple hepatocellular carcinoma beyond Milan criteria: A RCT

Lei Yin¹, Hui Li^{2,†}, Ai-Jun Li^{1,†}, Wan Yee Lau^{1,3}, Ze-ya Pan¹, Eric C.H. Lai^{1,3}, Meng-chao Wu¹, Wei-Ping Zhou^{1,*}

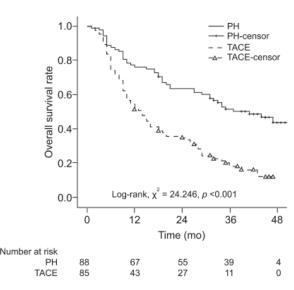


Fig. 2. Overall survival curves for PH and TACE.

Results: The 1-, 2-, and 3-year OS rates were 76.1%, 63.5%, and 51.5%, respectively, for the PH group compared with 51.8%, 34.8%, and 18.1%, respectively, for the TACE group (Log-rank test, χ^2 = 24.246, p <0.001). Multivariate Cox proportional hazards regression analysis revealed the type of treatment (hazard ratio, 0.434; 95% CI, 0.293 to 0.644, p <0.001), number of tumor (hazard ratio, 1.758; 95% CI, 1.213 to 2.548, p = 0.003) and gender (hazard ratio, 0.451; 95% CI, 0.236 to 0.862, p = 0.016) were significant independent risk factors associated with OS.

Resection in intermediate HCC: the problem of comparator

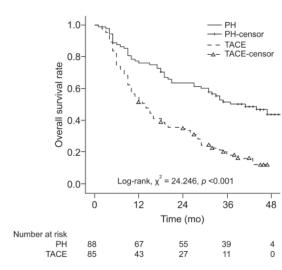
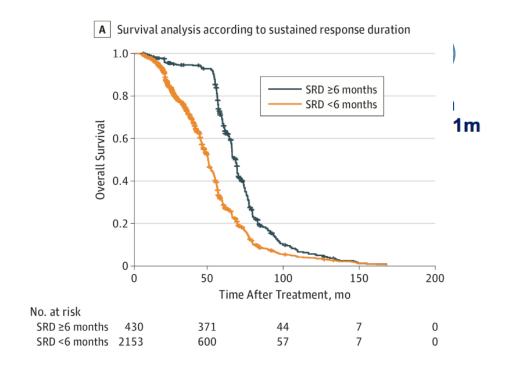



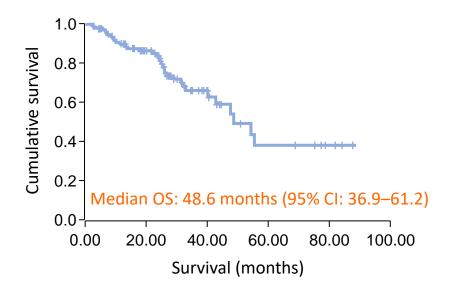
Fig. 2. Overall survival curves for PH and TACE.

Survival

The 1-, 2-, and 3-year OS rates and median survival were 76.1%, 63.5%, 51.5%, and 41 months (range 1–50 months) respectively, in the PH group. The corresponding figures for the TACE group were 51.8%, 34.8%, 18.1%, and 14 months (range 5–47 months), respectively. The PH group had significantly better OS than the TACE group (log-rank test, χ^2 = 24.246, p <0.001) (Fig. 2). The

For patients with SRD of 6 months or more the median (range) OS was 67.7 (64.8-72.1) months, which was better than that of patients with SRD of less than 6 months (median [range] OS, 53.5 [52.5-55.4] months) (HR, 0.132%%% CI, 0.112%0.168; P < .001)

Resection in intermediate HCC: the problem of comparator

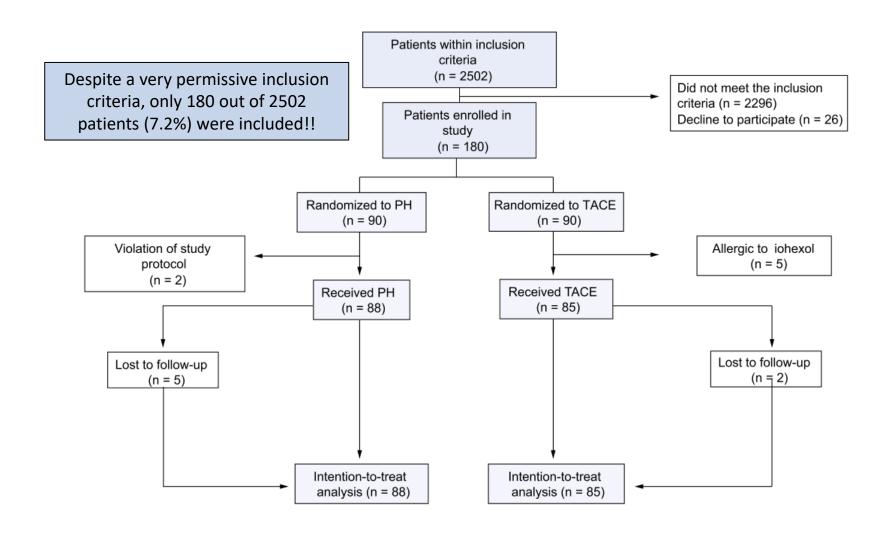

Table 1. Baseline Characteristics of Patients With Cirrhosis Undergoing Hepatic Resection for Intermediate HCC

Variable	In Study (n = 247)
Age, years	65 (57-71)
Male gender (%)	201 (81.4)
HBsAg ⁺ (%)	57 (23.1)
Anti-HCV ⁺ (%)	126 (51.0)
Mild ascites (%)	24 (9.7)
Presence of varices (%)	58 (23.5)
Serum albumin, g/dL	3.8 (3.4-4.0)
Total bilirubin, mg/dL	0.85 (0.59-1.25)
Platelet count, ×10 ³ /mmc	149 (105-218)
INR	1.13 (1.07-1.21)
Child-Pugh score	5 (5-6)
A5 (%)	141 (57.1)
A6 (%)	86 (34.8)
B7 (%)	18 (7.3)
B8 (%)	2 (0.8)
MELD score	8 (7-9)
Radiological tumor number	1 (1-2)
Single tumor (%)	124 (50.2)
Two or three tumors (%)	93 (37.7)
More than three tumors (%)	30 (12.1)
Radiological largest tumor size, cm	6.0 (5.0-7.7)
OS	
1 year (95% CI)	77.8% (72.1-82.6
3 year (95% CI)	48.7% (41.4-55.5
5 year (95% CI)	33.8% (26.2-41.5

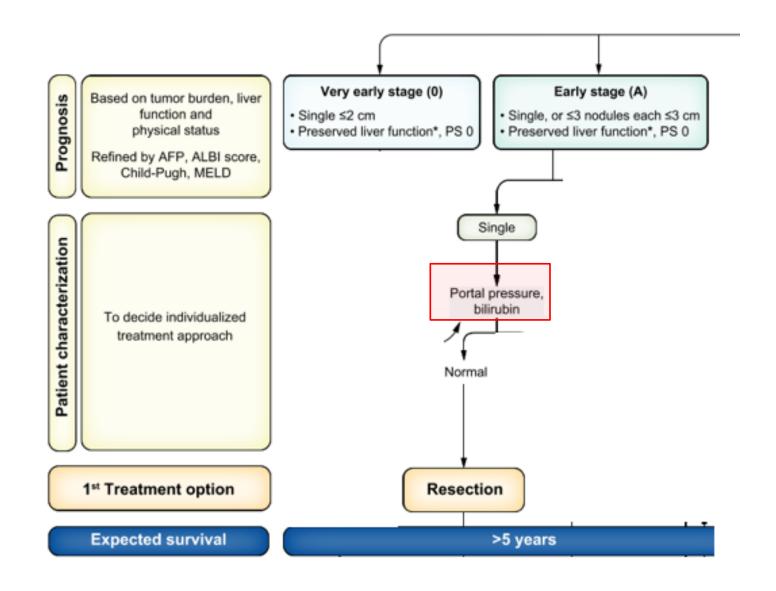
Continuous variables are reported as medians and IQRs (25th-75th percentiles).

Abbreviations: HBsAg, hepatitis B surface antigen; HCV, hepatitis C virus.

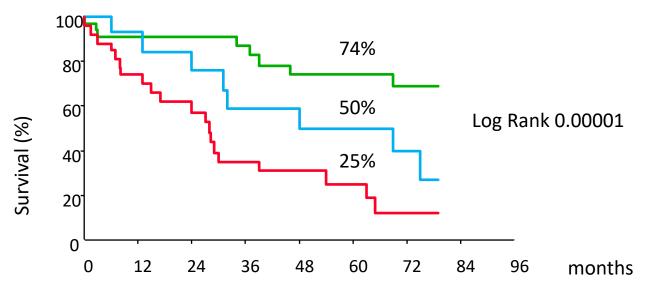
Cucchetti A et al. Hepatology. 2015:61(3):905-914 Burrel M, Reig M, et al. J Hepatol. 2012:56(6);1330-5 Malagari K, et al. CVIR 2012; 35: 119-1128



Child class (n)		1 year (%)	2 year (%)	3 year (%)	4 year (%)	5 year (%)
A						
21	One dominant $\leq 5 \text{ cm}$	100	95.2	71.4	66.6	47.6
37	One dominant > 5 cm	97.3	89.1	85.1	43.3	32.4
31	$Multinodular \leq 5 \ cm$	93.5	90.3	61.3	41.9	25.8
13	Multinodular > 5 cm	84.6	69.2	46.1	15.3	0
102	Overall	95	88.2	61.7	45	29.4
В						
17	One dominant $\leq 5 \text{ cm}$	94.1	88.2	58.8	41.2	23.5
35	One dominant > 5 cm	91.4	71.4	54.2	37.1	11.4
14	$Multinodular \leq 5 \ cm$	85.7	75	25	14.3	0
5	Multinodular > 5 cm	100	60	20	0	0
71	Overall	91.5	75	50.7	35.2	12.8
Total		93.6	83.8	62	41.04	22.5


Mean overall survival: 43.8 months

Resection in intermediate HCC: the problem of comparator

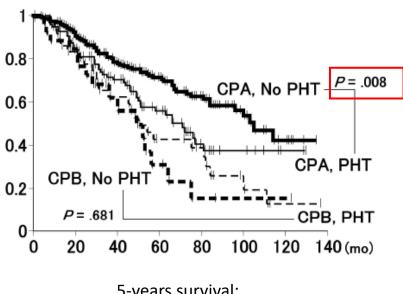


Prognostic role of clinically significant portal hypertension

Best candidates: - Solitary HCC

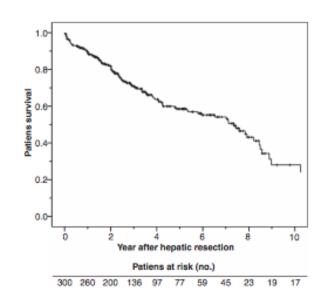
- Child-Pugh A: No portal hypertension (HVPG < 10 mmHg)

Normal Bilirubin (< 1 mg/dl)


No portal hypertension and normal bilirubin (n= 35)

Portal hypertension and normal bilirubin (n=15)

Portal hypertension and Bilirubin ≥ 1 mg/dL (n=27)


Prognostic role of clinically significant portal hypertension

5-years survival:

CP A, No PHT: 71%

CP A, PHT: 56%

5-years survival:

Overall: 57.7%

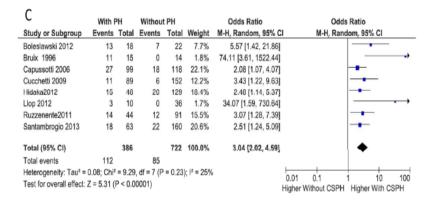
CP A, No PHT: 63.8%

Ishizawa T, et al. Gastroenterology. 2008;134:1908-16.

Cucchetti A, et al. Clin Cancer Res. 2012:18(16);4397-4405.

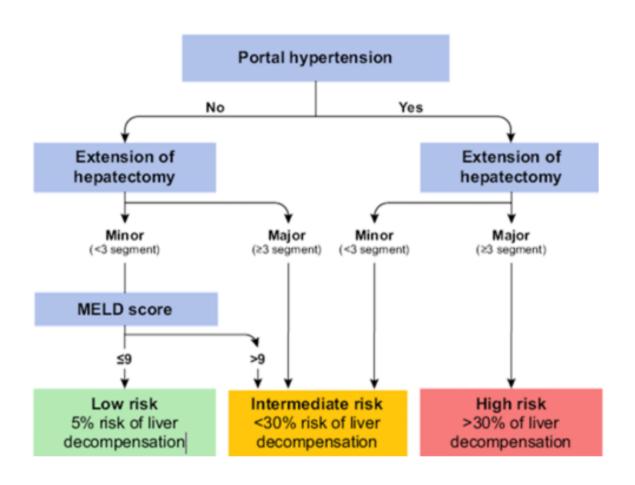
Roayaie S et al. Hepatology. 2015;62:440-451.

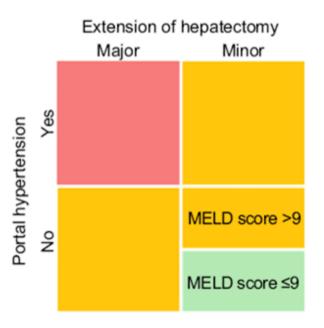
Meta-analysis of the impact of CSPH on postoperative outcomes


Panel A: 3-year mortality

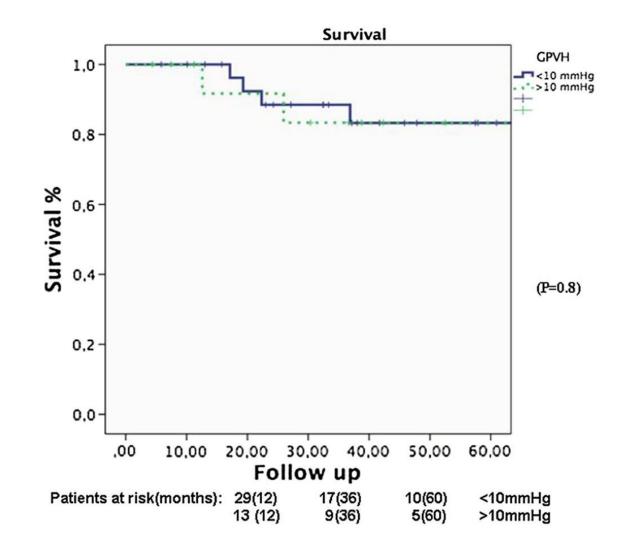
Α	With F	H	Without	PH		Odds Ratio		Odd	Is Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C		M-H, Ran	dom, 95% (CI
Capussotti 2006	55	99	45	118	15.4%	2.03 [1.18, 3.49]			-	
Cucchetti 2009	33	89	41	152	15.0%	1.60 [0.91, 2.79]			-	
Giannini 2013	15	53	19	63	10.1%	0.91 [0.41, 2.04]		-	+	
Hidaka2012	24	48	28	129	11.8%	3.61 [1.78, 7.29]			-	
Ishizawa 2008	44	136	53	250	17.3%	1.78 [1.11, 2.84]			-	
Llovet 1999	24	42	5	35	6.3%	8.00 [2.59, 24.69]			-	-
Ruzzenente2011	23	44	29	91	11.2%	2.34 [1.12, 4.90]			-	
Santambrogio 2013	21	63	32	160	12.9%	2.00 [1.04, 3.84]			***	
Total (95% CI)		574		998	100.0%	2.09 [1.52, 2.88]			•	
Total events	239		252						, (O)	
Heterogeneity: Tau ² =	0.10; Chi ²	= 13.2	0, df = 7 (P = 0.0	7); 2 = 47	%	0.04	1	1	
Test for overall effect:	Z = 4.50 (P < 0.0	0001)		100		0.01 Higher M	0.1 /ithout CSPH		IO 1

Panel B: 5-year mortality


В	With F	PH	Withou	t PH		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	I M-H, Random, 95% CI
Capussotti 2006	70	99	71	118	14.2%	1.60 [0.90, 2.82]	ı • -
Cucchetti 2009	43	89	58	152	15.2%	1.51 [0.89, 2.57]	· ·
Giannini 2013	23	44	28	51	9.7%	0.90 [0.40, 2.02]	
Hidaka2012	33	48	47	129	11.4%	3.84 [1.89, 7.79]	-
Ishizawa 2008	65	136	82	250	17.8%	1.88 [1.22, 2.88]	-
Llovet 1999	27	42	9	35	7.4%	5.20 [1.94, 13.94]	
Ruzzenente2011	24	44	25	91	10.6%	3.17 [1.49, 6.71]	
Santambrogio 2013	33	63	56	160	13.7%	2.04 [1.13, 3.69]	•
Total (95% CI)		565		986	100.0%	2.07 [1.51, 2.84]	•
Total events	318		376				85
Heterogeneity: Tau ² =	0.10; Chi ²	= 13.8	0, df = 7 (P = 0.0	5); 12 = 49	%	101 11 10 10
Test for overall effect:	Z = 4.51 (P < 0.0	0001)				0.01 0.1 1 10 100 Higher Without CSPH Higher With CSPH


Panel C: clinical decompensation

Redefinition of CSPH as a contraindication for surgical resection



Laparoscopic approach may expand resection in patients with CSPH

 Table 5
 Postoperative data

Variable	Non-CSPH $N=30$	CSPH $N=15$	p value
Mortality (90 days)	0	0	
Clavien-Dindo class	sification		
I	6 (27%) 2 ileus 4 fever unknown origin	_	
П	3 (10%) 2 ascites 1 heart failure	2 (14%) 1 ascites 1 haemorrhage	
IIIa	1 (3%) 1 wound infection	_	
IIIb	1 (3%) 1 haemorrhage	1 (7%) 1 evisceration	
Reintervention rate	1 (3%)	1 (7%)	ns
Hospital stay (days, median, range)	4 (2–11)	3 (2–20)	ns

Resection: Indications and challenging scenarios Summary

- Solitary HCC in patients without CSPH are the best candidates for resection
- Portal hypertension and multifocality are robust predictors of worse outcome but are not absolute contraindications
- According to the current scientific evidence, TACE should be considered the first treatment option for intermediate HCC. The role of resection should be evaluated in RCTs

Agenda

- Resection: Indications and challenging scenarios
- Liver transplantation: Where are the limits?
- Resection vs. Liver transplantation

Curative treatments: Liver transplantation

Outcomes applying restrictive selection criteria

Authors, year	n	Selection criteria	Recurrence	Survival at 5y
Mazzaferro, 1996	48	Milan	8%	75%*
Jonas, 2001	120	Milan		71%
Cillo, 2004	30	Milan	6.7%	72%
Herrero, 2008	47	Milan	8.5%	70%
Mazzaferro, 2009	444	Milan		73.3%

Mazzaferro V et al. N Engl J Med. 1996;334:693-9 Jonas S et al. Hepatology. 2001;33:1080-6 Cillo U et al. Ann Surg. 2004;239:150-9 Herrero JI et al. Liver Transpl. 2008;14:272-8 Mazzaferro V et al. Lancet Oncol. 2009;10:35-43

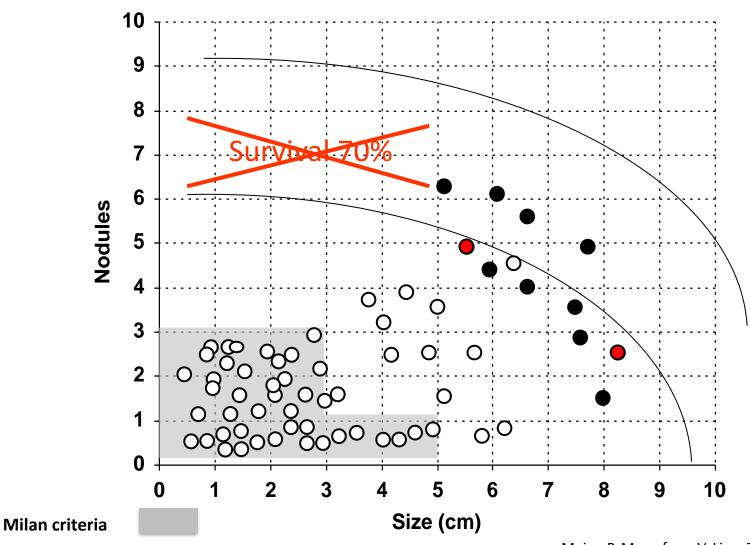
^{*} Survival at 4 years

^{~ 5-}y recurrence rate

^{¬ 100-(5-}y RFS)

Beyond Milan criteria

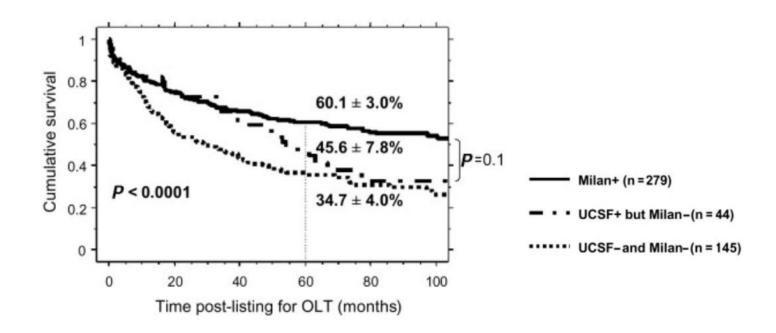
Expanded criteria


		5-year survival		
Author (year)	Criteria	Patients	Survival	
Yao, 2001	Post-LT, explant Solitary tumor ≤ 6.5 cm or ≤ 3 tumors ≤ 4.5 cm	70	75%	
Duffy, 2007	Post-LT, radiology/explant Solitary tumor ≤ 6.5 cm or ≤ 3 tumors ≤ 4.5 cm	208	64-81%	
Onaca, 2007	Post-LT, explant Solitary tumor ≤ 6 cm or ≤ 4 tumors ≤ 5 cm	659	55-63%	
Lee, 2008	Pre-LT, radiology Larger tumor ≤ 5 cm ≤ 6 nodules	186	76%	
Toso, 2008	Post-LT, explant Total tumor volume < 115 cm ³	251	80%	
Herrero, 2008	Pre-LT, radiology One tumor ≤ 6 cm or 3 nodules ≤ 5 cm	85	70%	

Yao F et al. Hepatology. 2001:33(6);1394-1403. Duffy JA et al. Ann Surg. 2007:246(3):502-511. Onaca N et al. Liver Transpl. 2007:13(3):391-399. Lee S et al. Liver Transpl. 2008:14(7):935-945. Toso C. et al. Liver Transpl. 2008:14(8):1107-1115. Herrero JI et al. Liver Transpl. 2008:14(3):272-278.

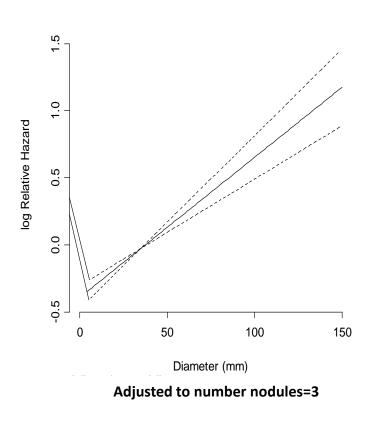
Beyond Milan criteria....chaos!

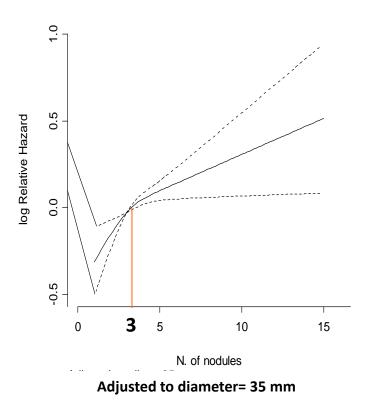
There is not uniform criteria for reporting results


Beyond Milan criteria

External validation of UCSF criteria

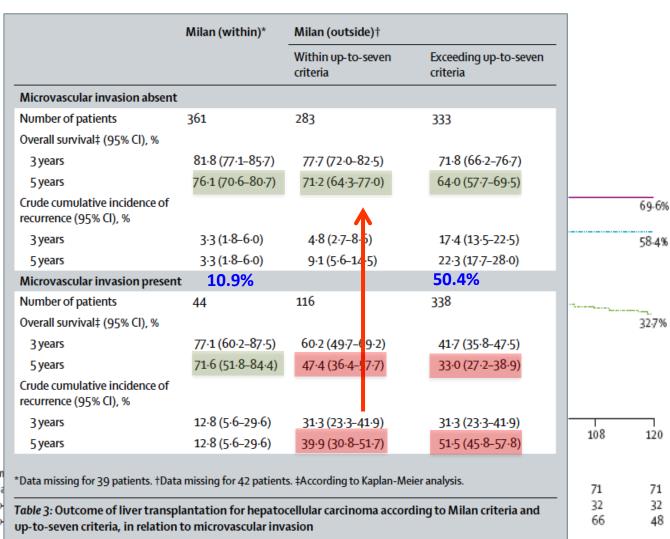
Retrospective analysis of 479 HCC patients:


- 279 patients Milan in
- 44 patients Milan out but UCSF in (10% of total cohort)
- 145 patients Milan and UCSF out


Beyond Milan criteria

Metroticket study (n=1.556)

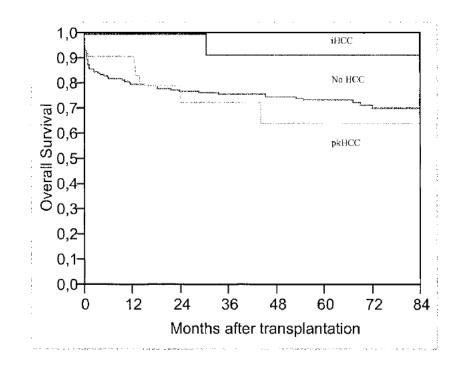
The risk of death exponentially increase with the size



The risk increase up to 3 nodules, achieving afterwards a plateau

Metroticket analysis

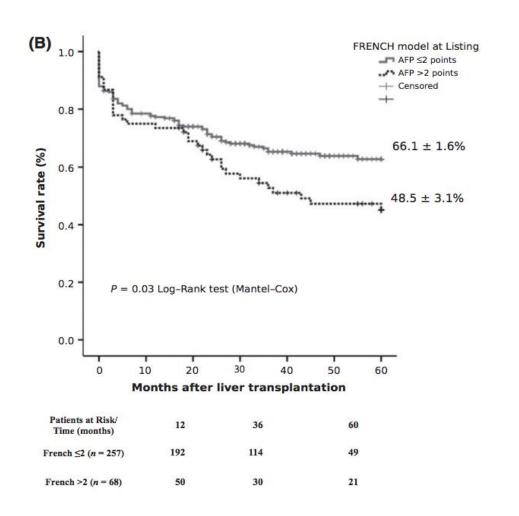
Up to seven criteria

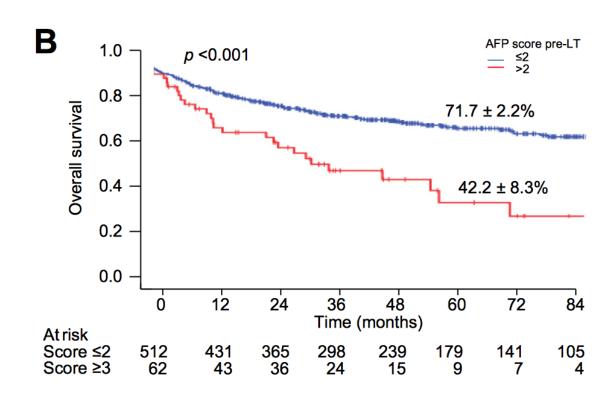

Patien Within Mila Beyond Milan within up-Exceeding Milan and up-

Biological markers as selection criteria

Differentiation degree as a selection criteria

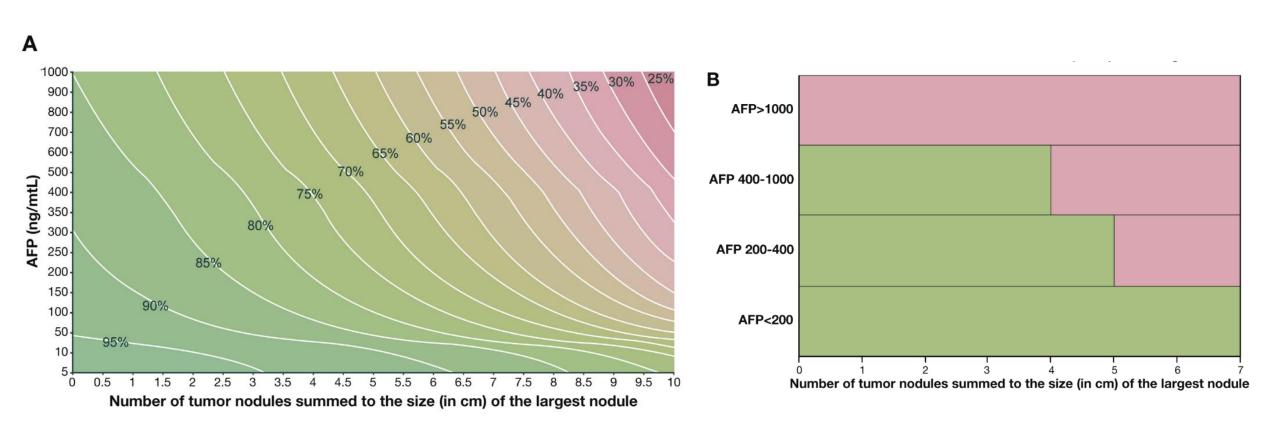
- Exclusion criteria for LT: Vascular invasion, extrahepatic spread and/or poor differentiated tumors
- During 11 years 133 HCC patients were evaluated: 93 excluded, 10 due to poor differentiated HCC (5 of them within Milan)


Limitations:


- -Tumor heterogeneity
- -No specific information regarding the survival in those outside Milan
- -Retrospective: Only those transplanted are analyzed

Biological markers as selection criteria

AFP as a selection criteria: External validation



Biological markers as selection criteria

Metroticket 2.0: The value of AFP

Beyond Milan criteria

Expanded criteria

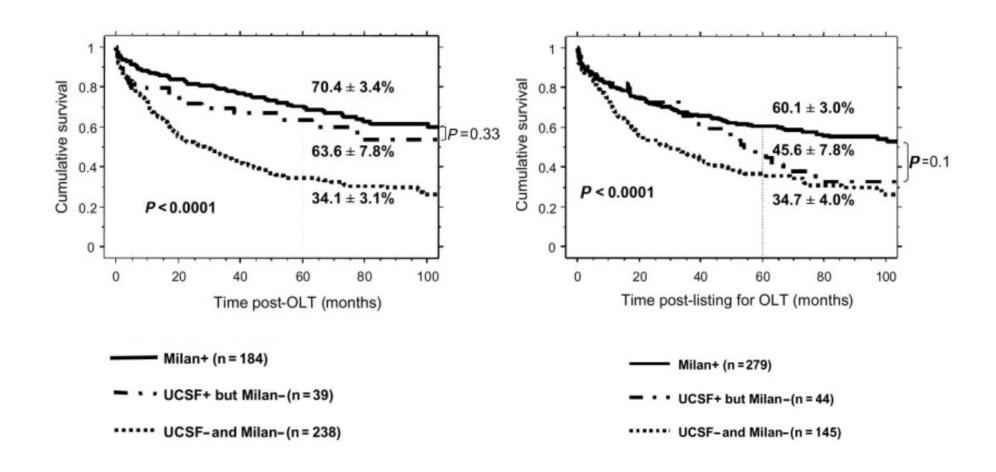
		5-у	ear survival	5-year survival Exceeding Milan criteria		
Author (year)	Criteria	Patients	Survival	Patients	Survival	
Yao, 2001	Post-LT, explant Solitary tumor ≤ 6.5 cm or ≤ 3 tumors ≤ 4.5 cm	70	75%	N/A	N/A	
Duffy, 2007	Post-LT, radiology/explant Solitary tumor ≤ 6.5 cm or ≤ 3 tumors ≤ 4.5 cm	208	64-81%	82	N/A	
Onaca, 2007	Post-LT, explant Solitary tumor ≤ 6 cm or ≤ 4 tumors ≤ 5 cm	758	60%	130	N/A	
Lee, 2008	Pre-LT, radiology Larger tumor ≤ 5 cm ≤ 6 nodules	186	76%	N/A	N/A	
Toso, 2008	Post-LT, explant Total tumor volume ≤ 115 cm ³	274	74%	N/A	N/A	
Herrero, 2008	Pre-LT, radiology One tumor ≤ 6 cm or 3 nodules ≤ 5 cm	85	70%	26	66%	
Mazzaferro, 2009	Post-LT, explant "Up-to-seven" criteria	727	74%	283	71.2%	

Yao F et al. Hepatology. 2001:33(6);1394-1405. Duffy JA et al. Ann Surg. 2007:246(3):502-511. Onaca N et al. Liver Transpl. 2007:13(3):391-399. Lee S et al. Liver Transpl. 2008:14(7):935-945.

Toso C. et al. Liver Transpl. 2008:14(8):1107-1115. Herrero JI et al. Liver Transpl. 2008:14(3):272-278. Mazzaferro V, et al. Lancet Oncol. 2009;10:35-43.

Beyond Milan criteria

Expanded criteria


		5-у	rear survival	5-year survival Exceeding Milan criteria		
Author (year)	Criteria	Patients	Survival	Patients	Survival	
Yao, 2001	Post-LT, explant Solitary tumor ≤ 6.5 cm or ≤ 3 tumors ≤ 4.5 cm	70	75%	N/A	N/A	
Duffy, 2007	Post-LT, radiology/explant Solitary tumor ≤ 6.5 cm or ≤ 3 tumors ≤ 4.5 cm	208	64-81%	82	N/A	
Onaca, 2007	Post-LT, explant Solitary tumor ≤ 6 cm or ≤ 4 tumors ≤ 5 cm	758	60%	130	N/A	
Lee, 2008	Pre-LT, radiology Larger tumor ≤ 5 cm ≤ 6 nodules	186	76%	N/A	N/A	
Toso, 2008	Post-LT, explant Total tumor volume ≤ 115 cm ³	274	74%	N/A	N/A	
Herrero, 2008	Pre-LT, radiology One tumor ≤ 6 cm or 3 nodules ≤ 5 cm	85	70%	26	66%	
Mazzaferro, 2009	Post-LT, explant "Up-to-seven" criteria	727	74%	283	71.2%	

Yao F et al. Hepatology. 2001:33(6);1394-1405. Duffy JA et al. Ann Surg. 2007:246(3):502-511. Onaca N et al. Liver Transpl. 2007:13(3):391-399. Lee S et al. Liver Transpl. 2008:14(7):935-945.

Toso C. et al. Liver Transpl. 2008:14(8):1107-1115. Herrero JI et al. Liver Transpl. 2008:14(3):272-278. Mazzaferro V, et al. Lancet Oncol. 2009;10:35-43.

Imaging versus explant

Imaging versus explant

Prospective evaluation based on imaging staging using UCSF criteria: 168 patients, 38 of them exceeding Milan criteria but within UCSF

Table 4: Histopathologic tumor characteristics in the liver explant

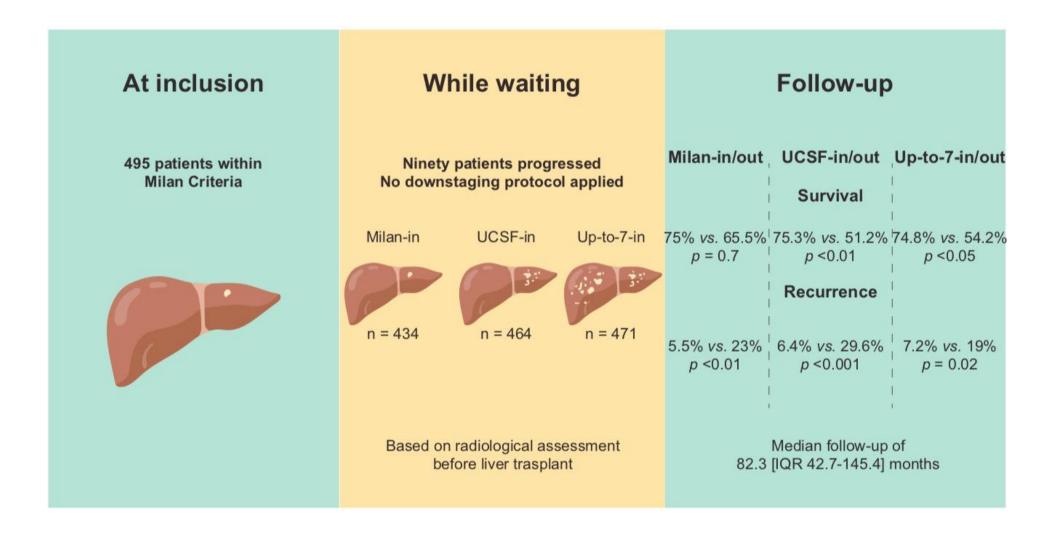
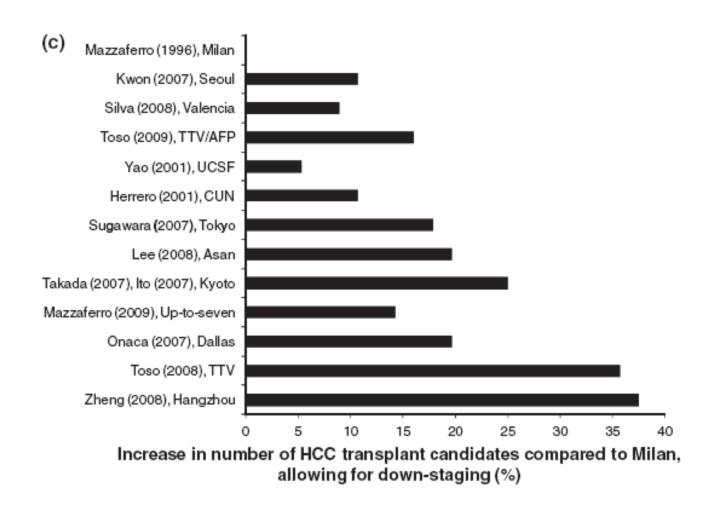
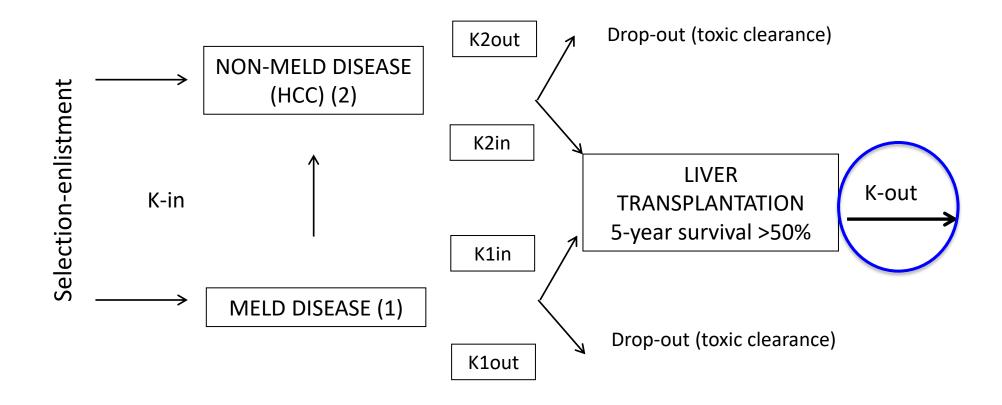
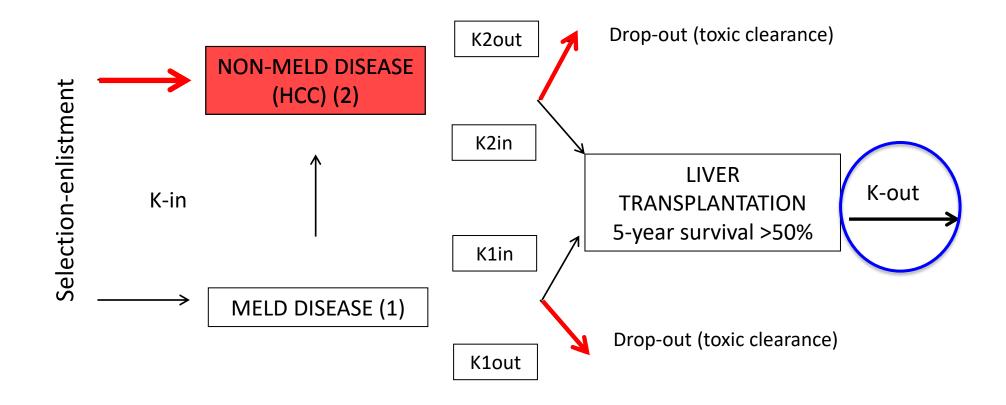
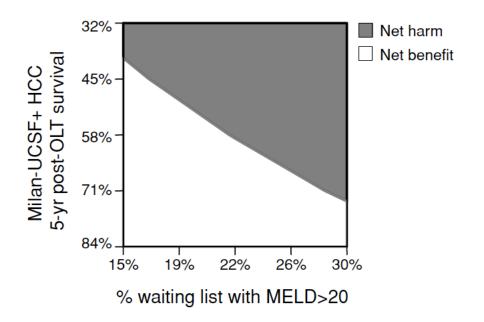

	No. of patients	No. with
Pathologic tumor stage	(N = 168)	recurrence
T1	11 (6.5%)	0
T2	103 (61.3%)	3 (2.9%)
T3A	29 (17.3%)	1 (3.4%)
ТЗВ	8 (4.8%)	4 (50%)
T4A	12 (7.1%)	1 (8.3%)
T4B	4 (2.4%)	2 (50%)
N1 ¹	1 (0.6%)	1 (100%)
Histologic grade ²	# of patients (N = 124)	# with recurrence
Well-differentiated (grade 1)	52 (41.9%)	0
Moderately differentiated (grade 2)	58 (46.8%)	8 (13.8%)
Poorly differentiated (grade 3)	14 (11.3%)	3 (21.4%)
Vascular invasion ³	# of patients $(N = 168)$	# with recurrence
Micro-vascular	14 (8.3%)	5 (35.7%)
Macro-vascular	4 (2.4%)	2 (50%)
No	150 (89.3%)	5 (3.3%)

Table 6: Tumor under-staging by preoperative imaging studies

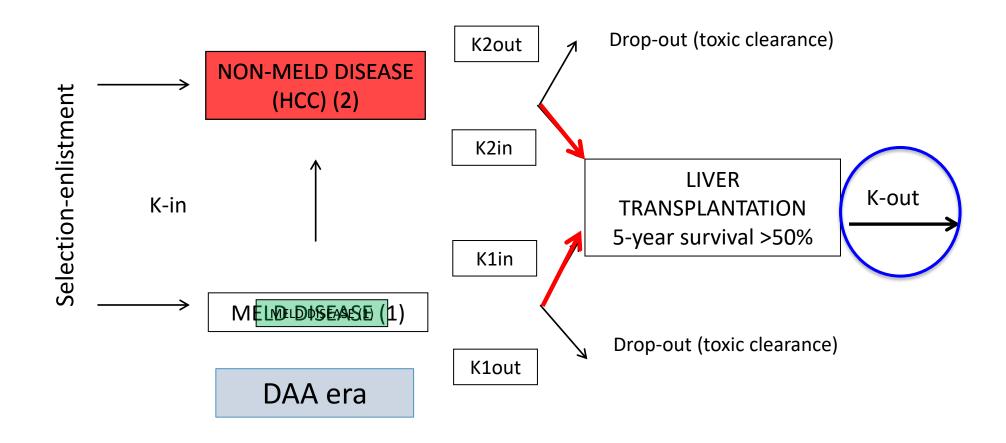

Pretransplant tumor stage	No. with under- staging ¹	No. with recurrence
T2 (N = 122)	24 (19.7%)	6 (25%)
	T3A = 10	1
	T3B = 4	2
	T4A = 7	0
	T4B = 2	2
	N1 = 1	1
T3A $(N = 38)^2$	11 (28.9%)	2 (18.2%)
	T3B = 4	1
	T4A = 5	1
	T4B = 2	0


Progression beyond Milan criteria during waiting list




Impact on the waiting list if criteria are expanded

Cost-efficacy study using a Markov model for evaluating the benefit in survival of transplanting patients using expanded criteria compared with the harm caused to the other patients in the waiting list

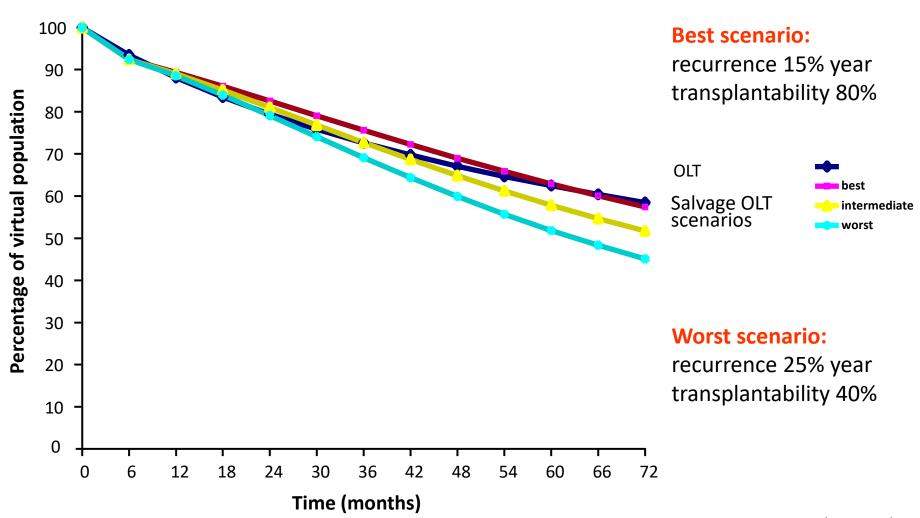

Table 3: Harm caused to individual patients on the waiting list when the patient with Milan-UCSF+ HCC receives an organ¹

Patient subgroup	Increase in mortality risk (per patient)	Quality-adjusted days of life lost (per patient)
HCC within Milan	0.4%	10
MELD 11-20	0.1%	3
MELD 21-30	1.1%	27
MELD >30	4.2%	108

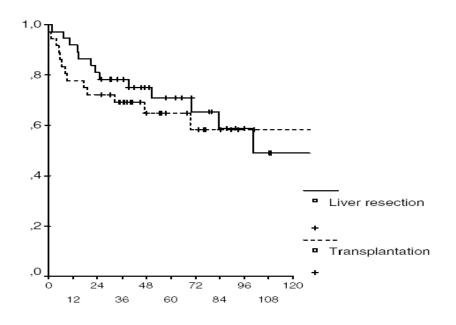
¹Based on national averages for organ arrival rate.

Expanded criteria for HCC: Controversies Summary

- There is life beyond "Milan".....
- A discreet expansion will allow an acceptable results
- There is a need of surpassing the criteria based exclusively on size and number of nodules
- The application of expanded criteria should be done if the local dynamics of the waiting list does not harm the other included patients (both the HCC patients and those with advanced liver disease)

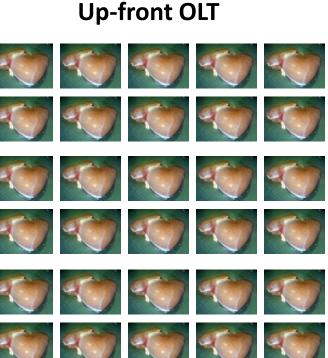

Agenda

- Resection: Indications and challenging scenarios
- Liver transplantation: Where are the limits?
- Resection vs. Liver transplantation


Survival curves of the virtual population

Survival curves in real population

	Resection + salvage OLT	Upfront OLT
Patients (N)	37	36
Mortality (overall) (n)	17	13
Recurrences (n)	22	4
Transplanted (salvage) (n)	6	36
Survival 5-10 years (%)	70–50	65–60



Survival curves in real population

For the same survival: grafts used ...

Curative treatments: Surgical Resection Predictive factors for HCC recurrence after resection

Author, year	Vascular invasion	Satellites	Poor-diff.	Multifocal	Size	Cirrhosis	AFP	Others
Imamura, 2003	X			X		Hepatitis activity	X	Non-anatomical resection
Ishizawa, 2008	X			X		Child B		
Schiffman SC, 2010	X			X				
Fuks, 2012	X	X	X		> 3 cm	X		
Hasegawa, 2013				X	≥ 2 cm	Liver damage, platelets	X	Age, gender, HCV +, DCP
Park SK, 2013	X			UICC st BCLC st	_			
Li SH, 2013	Х					Х		Non-anatomical resection
Yin, 2013	Х	Х	Х	BCLC stage	≥ 3 cm			Age, capsule, GGT, HBV DNA, antivirial

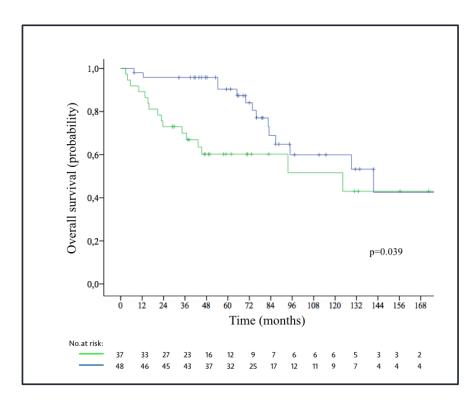
Salvage liver transplantation for recurrence prevention

Variable	HR	CI 95%	р
Cirrhosis	1.9	1.04-4.01	0.02
Diameter> 3cm	1.34	1.03-3.12	0.03
mVI	2.83	1.10-7.29	0.003
Satellites	2.46	1.01-6.68	0.04
Poor diff.	3.18	1.31-7.70	0.01

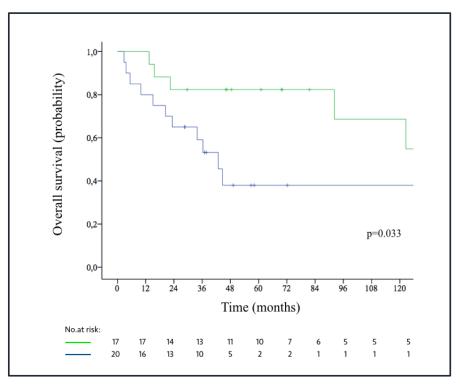
Number of Pejorative Histological Factors*	Number of Patients	No Recurrence (n = 22) n (%)	Recurrence Within MC (n = 60) n (%)	Recurrence Beyond MC (n = 30) n (%)
0	41	10 (24)	31 (76)	0 (0)
1	43	10 (23)	24 (56)	9 (21)
2	14	2 (14)	5 (36)	7 (50)
3	8	0 (0)	0 (0)	8 (100)
4-5	6	0 (0)	0 (0)	6 (100)

Pejorative Histological factors >3

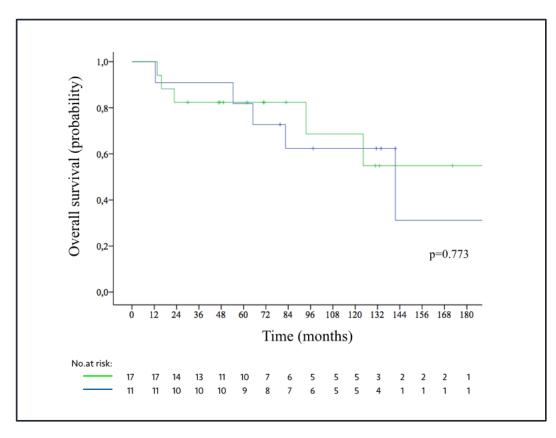
Consider LT before recurrence


Salvage liver transplantation for recurrence prevention

1995-2012: Liver Resection HCC (n=164; 96 low risk and 68 high risk)


Suitable for both Liver Resection and Liver Transplantation

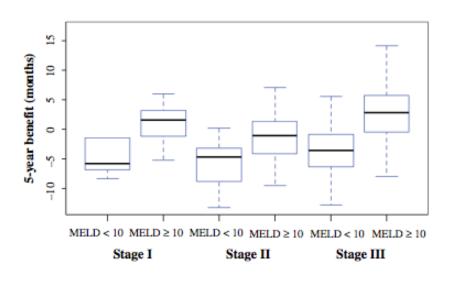
Salvage liver transplantation for recurrence prevention


Survival of the whole cohort from resection according to the pathological findings. The survival was significantly superior in low-risk compared to high-risk.

Survival of the high- risk patients (n=37) after resection. The survival was significantly superior in those finally transplanted compared to non-transplanted patients.

Salvage liver transplantation for recurrence prevention

Survival of those patients finally transplanted (n=28) from the moment of liver transplantation. There were no statistically significant differences in survival.


(1, 3, and 5-year patient were 100% vs. 100%, 90.9% vs. 82.4%, 81.8% vs. 82.4%, respectively; p=0.773).

Resection versus Liver transplantation

Survival benefit of LT vs HR: Impact of MELD score

- LT proved to be harmful in patients with resectable HCC with a low MELD score (<10) or with aggressive tumors (with MVI)
- As a result of a shortage of donors, only selected resectable tumors with a MELD score of >10 should be considered for transplantation.

Group	Stage I, benefit (n°)	Stage II, benefit (n°)	Stage III, benefit (n°)	
MELD <10				
MVI				
No	-1.44 (171)	-3.27 (171)	-1.33 (182)	
Yes	-6.90 (174)	-9.05 (137)	-6.15 (164)	
p value based on MVI	< 0.0001	< 0.0001	< 0.0001	
D value based on MVI	140.15851	140.03431	135.44041	
$MELD \ge 10$				
MVI				
No	3.19 (178)	1.45 (162)	4.71 (150)	
Yes	-1.14 (161)	-3.91 (174)	0.93 (176)	
p value based on MVI	< 0.0001	< 0.0001	< 0.0001	
D value based on MVI	119.16311	123.58371	116.26081	

Stage I: HCC within Milan criteria Stage II: HCC within Up-to-7 criteria Stage III: HCC beyond Up-to-7 criteria

Resection vs. Liver transplantation Summary

- In patients with preserved liver function and single tumors, resection offers a similar outcome, preserving grafts for other patients
- Ab initio indication has shown excellent results
- An observational period (6 months?) may allow the identification of aggressive tumors

The BCLC group

de Madrid

