

Asignatura: Cirrosis III

"Insuficiencia renal en la cirrosis. Insuficiencia renal en la cirrosis por MAFLD"

Pere Ginés

Hospital Clínic de Barcelona. Universitat de Barcelona. Institut d'Investigacions Biomèdiques August Pi-Sunyer (IDIBAPS), CIBERehd, Barcelona

Disclosure of interests

PERE GINÈS

I disclose the following financial relationship(s) with a commercial interest:

Mallinckrodt, Novartis, Sequana Medical, Gilead,

Grifols, Martin Pharmaceuticals, Intercept, Echosens

- Definition and prevalence of AKI in cirrhosis
- Staging and main etiologies of AKI
- Kidney biomarkers and AKI in cirrhosis
- Algorithm for diagnosis and management of AKI in cirrhosis
- CKD. Role of MAFLD. Transition from AKI to CKD

- Definition and prevalence of AKI in cirrhosis
- Staging and main etiologies of AKI
- Kidney biomarkers and AKI in cirrhosis
- Algorithm for diagnosis and management of AKI in cirrhosis
- CKD. Role of MAFLD. Transition from AKI to CKD

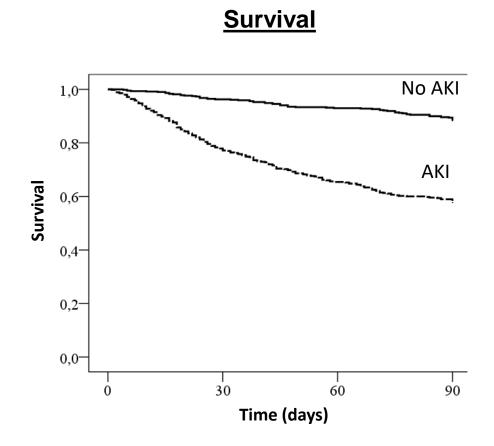
ACUTE KIDNEY INJURY IN CIRRHOSIS

International Club of Ascites (ICA-AKI) definition

Increase in sCr ≥0.3 mg/dL (≥26.5 µmol/L) within 48 h; or increase of >50% from baseline which is known, or presumed, to have occurred within the prior 7 days. Values up to the previous 3 months can be used as baseline

Examples:

Baseline	AKI	Diagnosis		
0.7 mg/dL	2.6 mg/dL	AKI		
0.9 mg/dL	1.2 mg/dL	AKI		
1.8 mg/dL	3.2 mg/dL	AKI on CKD		
	2.5 mg/dL	AKI or CKD?		

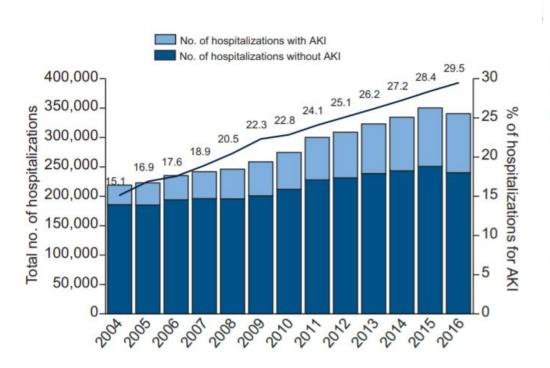


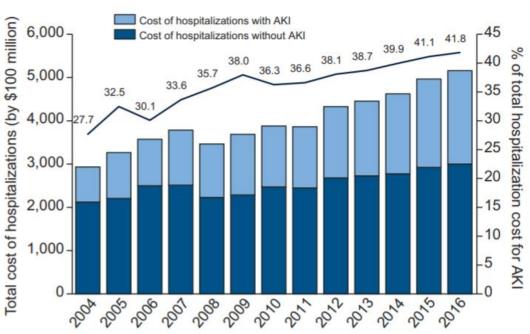
PREVALENCE OF AKI AND PROGNOSIS

Hospitalized patients with decompensated cirrhosis (n=1155)

Prevalence 100 90 80 70 60 53% 50 29% 18% 20 10 0 No AKI AKI AKI hospitalization at admission

Huelin P. et al, Clin Gastroenterol Hepatol 2017





BURDEN OF AKI IN CIRRHOSIS IN USA

- Definition and prevalence of AKI in cirrhosis
- Staging and main etiologies of AKI
- Kidney biomarkers and AKI in cirrhosis
- Algorithm for diagnosis and management of AKI in cirrhosis
- CKD. Role of MAFLD. Transition from AKI to CKD.

ACUTE KIDNEY INJURY IN CIRRHOSIS

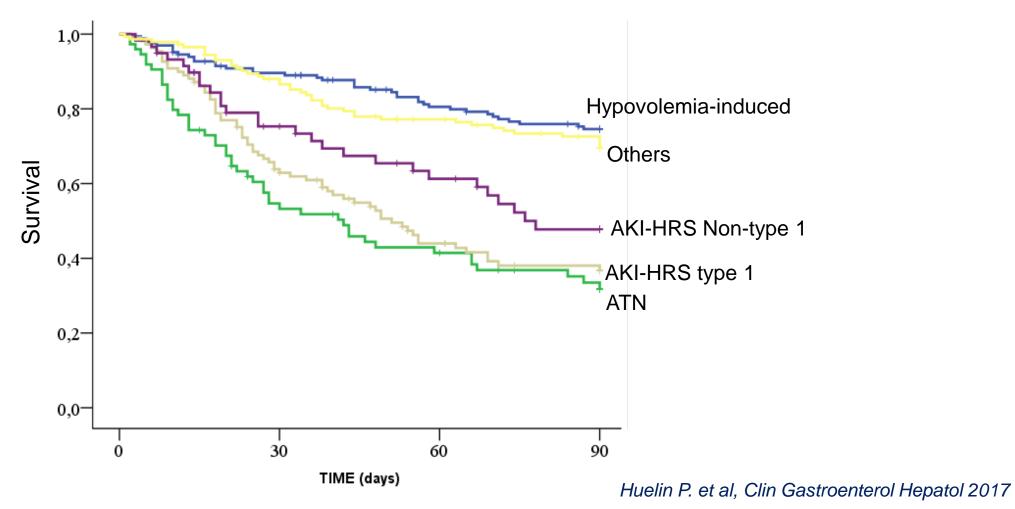
International Club of Ascites (ICA-AKI) definition

Staging of AKI

Stage AKI	CRITERIA				
Stage 1	increase in sCr ≥0.3 mg/dL (26.5 mmol/L) or an increase in sCr ≥1.5-fold to twofold from baseline				
68%	Stage 1AsCr at diagnosis: < 1.5 mg/dL				
Stage 2 19%	increase in sCr >two to threefold from baseline				
Stage 3	increase of sCr >threefold from baseline or sCr ≥4.0 mg/dL (353.6 mmol/L) with an acute increase ≥0.3 mg/dL (26.5 mmol/L) or initiation of renal replacement therapy				
13%					

MAIN ETIOLOGIES OF AKI IN CIRRHOSIS

- HYPOVOLEMIA-INDUCED (diuretics, GI bleeding, diarrhea).
- HEPATORENAL SYNDROME
- ACUTE TUBULAR NECROSIS (shock, nephrotoxic drugs, other).
- NON-STEROIDAL ANTIINFLAMMATORY DRUGS (NSAIDs)
- GLOMERULONEPHRITIS
- MISCELLANEOUS/UNKNOWN



PROGNOSIS OF AKI IN CIRRHOSIS

Relevance of the etiology of AKI

- Definition and prevalence of AKI in cirrhosis
- Staging and main etiologies of AKI
- Kidney biomarkers and AKI in cirrhosis
- Algorithm for diagnosis and management of AKI in cirrhosis
- CKD. Role of MAFLD: Transition from AKI to CKD.

KIDNEY BIOMARKERS IN CIRRHOSIS

Potential usefulness

Help in differential diagnosis of AKI (ATN vs HRS)

Provide information on kidney outcomes

Provide prognostic information

Provide information on reversibility after transplantation

DIFFERENTIAL DIAGNOSIS OF AKI IN CIRRHOSIS

Urine NGAL for diagnosis of ATN vs other types of AKI

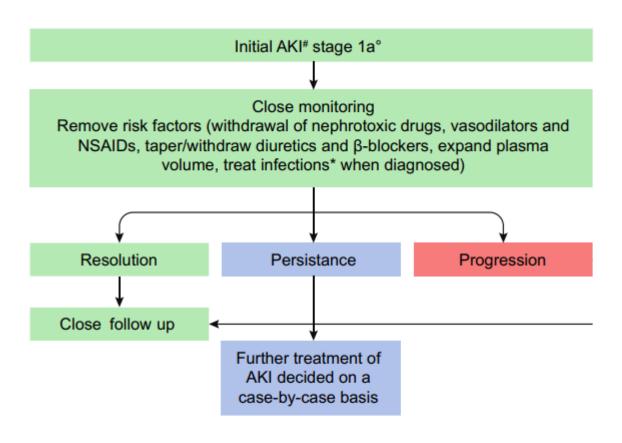
Patients included

Author (year)	AKI (n)	HRS (n)	ATN (n)	Day of urine collection	AUROC ATN vs other	Cut-off value	Sn/Sp (%)*
Fagundes (2012)	84	33	11	AKI diagnosis	NA	194 µg/g	91/82
Verna (2012)	52	20	15	AKI diagnosis	0.86	110 ng/mL	88/85
Belcher (2014)	76	16	39	median 2 days after AKI diagnosis	0.78	365 ng/mL	NA
Ariza (2015)	39	12	15	AKI diagnosis ±1 day	0.95	294 µg/g	92/89
Huelin (2019)	320	93	39	AKI diagnosis and day 3**	0.87	220 μg/g	88/85

^{*}Sensitivity/Specificity

^{**} Urine was collected at diagnosis of AKI and at day 3. Values shown in the table are those of day 3.

- Definition and prevalence of AKI in cirrhosis
- Staging and main etiologies of AKI
- Kidney biomarkers and AKI in cirrhosis
- Algorithm for diagnosis and management of AKI in cirrhosis
- CKD. Role of MAFLD. Transition from AKI to CKD.



EASL GUIDELINES ALGORITHM FOR AKI DIAGNOSIS AND MANAGEMENT

*AKI at the first fulfilling of KDIGO criteria

- Definition and prevalence of AKI in cirrhosis
- Staging and main etiologies of AKI
- Kidney biomarkers and AKI in cirrhosis
- Algorithm for diagnosis and management of AKI in cirrhosis
- CKD. Role of MAFLD. Transition from AKI to CKD

CKD IN CIRRHOSIS

Definition: Estimated GFR < 60 ML/min for more than 3 months

Two main types of CKD in cirrhosis

- Functional: HRS-CKD ("type-2 HRS")

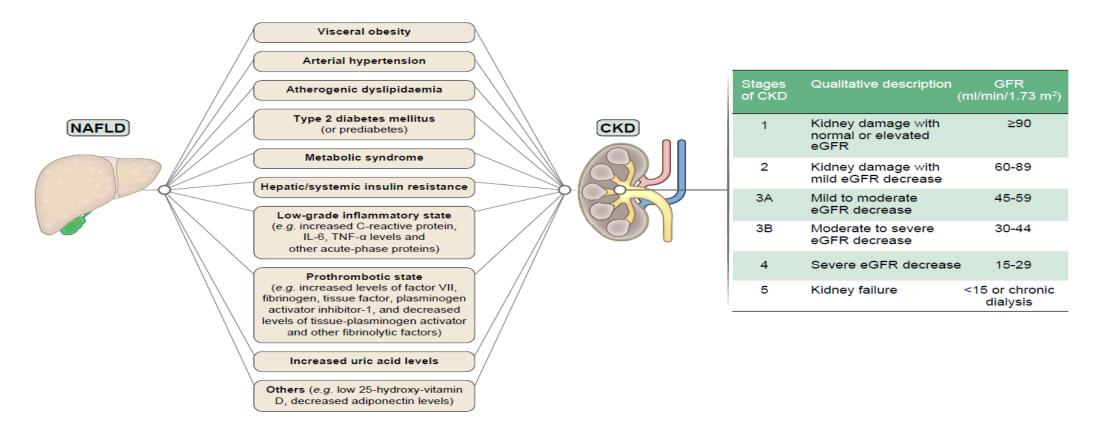
- Structural: MAFLD-associated (combination of factors)

Transition from AKI to CKD

Glomerulonephritis (i.e IgGA)

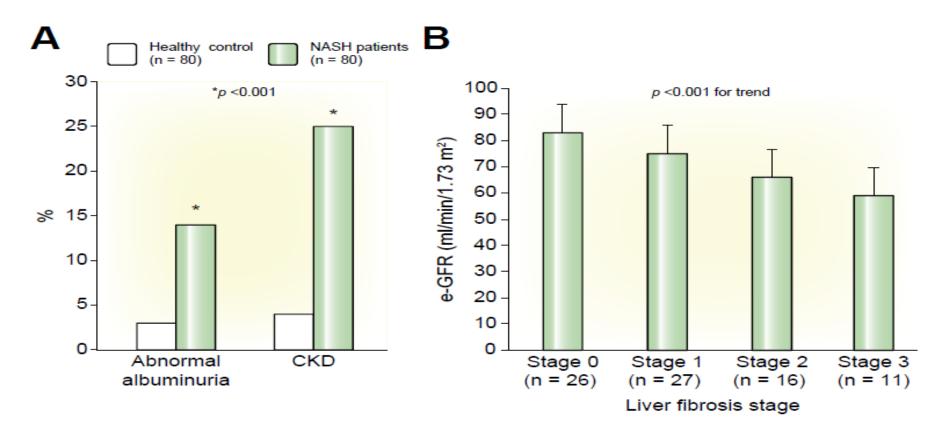
CKD IN CIRRHOSIS

Clinical consequences


- Poor response to diuretics; refractory ascites common
- Hyponatremia, HE, and AKI frequent with diuretic therapy
- Increased hospitalizations
- Increased risk of complications of cirrhosis (AKI, HE, infections)
- Poor outcome before transplantation
- Worse outcome after transplantation vs patients without CKD

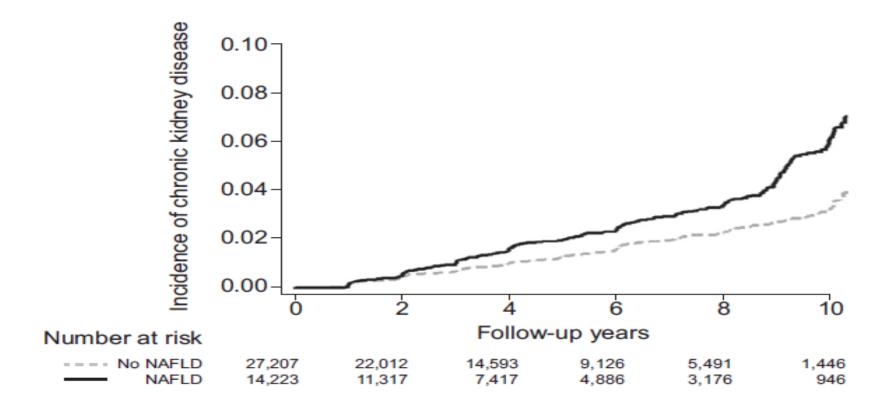
CKD AND MAFLD

Byrne.JHepatol.2020



CKD AND MAFLD Relationship with fibrosis stage

Byrne.JHepatol.2020



CKD AND MAFLD

Hyun Sinn.JHepatol.2017

TAKE-HOME MESSAGES (1)

- The diagnostic criteria of AKI are helpful for early detection of impairment in kidney function
- Categorization of patients with AKI stage 1 into 1A and 1B identifies subgroups with very different kidney and patient outcomes
- Etiology of AKI is an important determinant of prognosis, mortality being higher for hepatorenal syndrome and acute tubular necrosis vs hypovolemiainduced AKI
- Urine NGAL is useful in the differential diagnosis between ATN vs other etiologies of AKI in cirrhosis and also for outcome prediction

TAKE-HOME MESSAGES (2)

- CKD is common in patients with cirrhosis and is defined by a persistent reduction in eGFR (<60 mL/min) for more than 3 months
- Development of CKD is associated with an increased risk of complications, particularly AKI, refractory ascites, and bacterial infections, and increased 3month readmission rate
- CKD is common in patients with MAFLD and its frequency increases in parallel with progression of liver fibrosis
- CKD identifies a high-risk group of patients with cirrhosis

de Madrid

