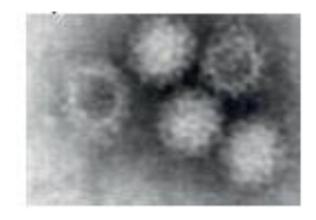


Asignatura: Hepatitis Virales

Hepatitis E virus: What is new?

Maria Buti MD

Liver Unit, Internal Medicine Department


Epidemiology

- First cause of Acute Hepatitis
 - Worldwide, in Europe, in France and the UK
- 20 million Cases/year
 - -70.000 deaths/year
 - > 3 million symptomatic patients
- In Europe: 2 million cases
 - Mainly autochthonous cases

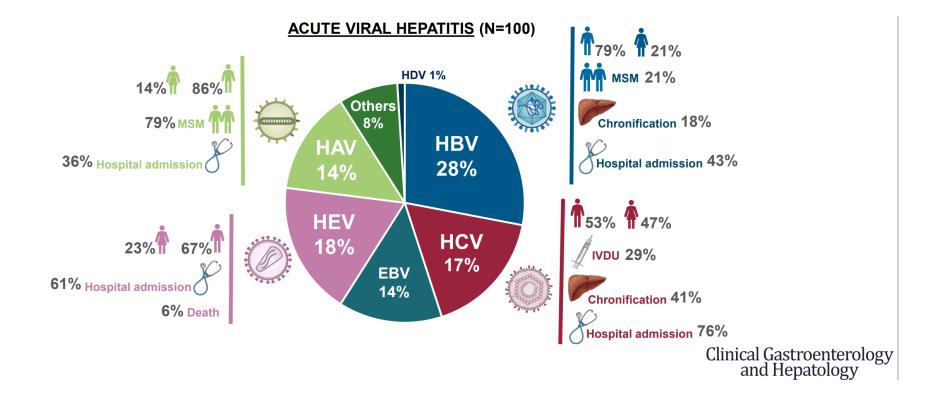
WHO. Viral Hepatitis 2015 EASL Guidelines 2018

HEV

- HEV is a small, non-enveloped, positive sense, single-stranded RNA virus
- Orthohepevirus genus under the Hepeviridae family
- At least,8 HEV genotypes

HEV in developed countries

Acute hepatitis E

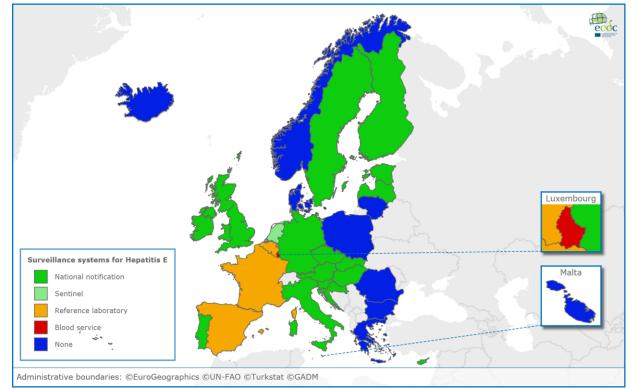

Symptomatic

Asymptomatic

98%?

Zhu FC, et al. Lancet 2010; 376: 895–902

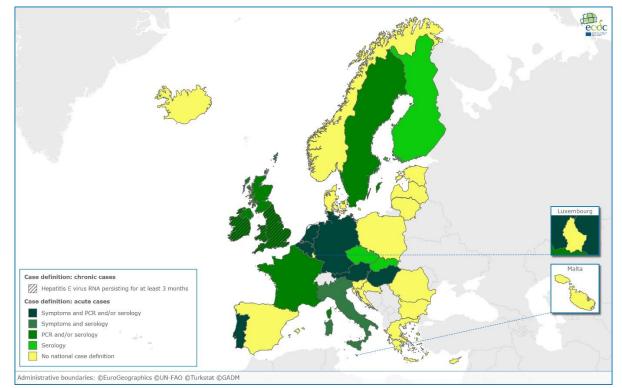
Acute Hepatitis E in Spain


LllanerasJ et al 2020

Surveillance of hepatitis E in Europe

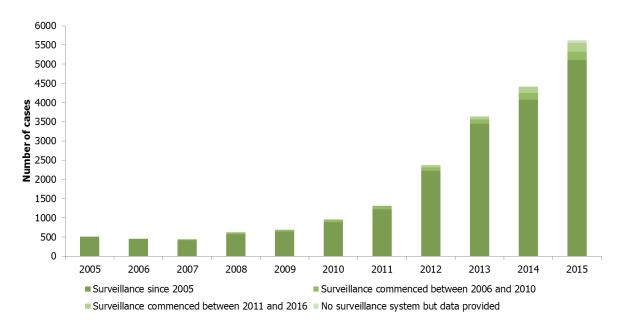
- One of the most common causes of acute hepatitis in the EU/EEA
- Evidence of increasing number of autochthonous cases in Europe
- Hepatitis E is not notifiable at EU level
- Populations under surveillance, case definitions and reporting systems, are set by Member States

HEV surveillance systems in EU/EEA, 2015

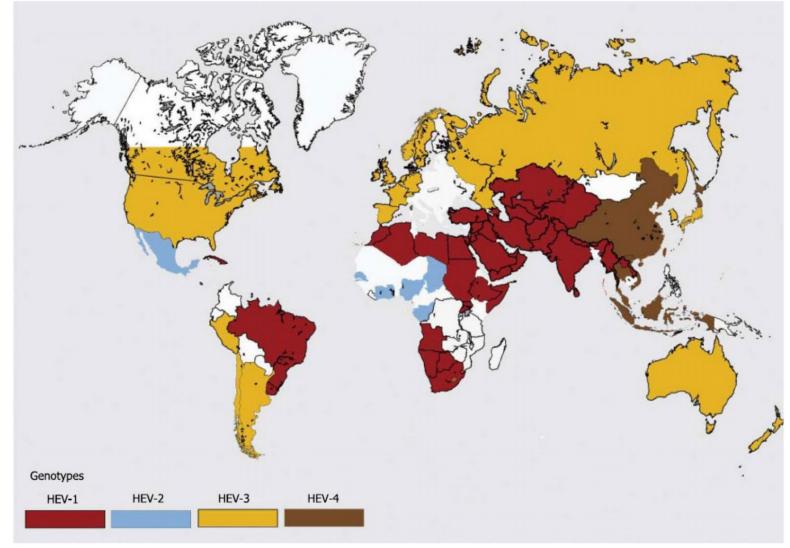

20 EU/EEA countries with HEV-specific surveillance

https://ecdc.europa.eu/en/publications-data/hepatitis-e-eueea-2005-2015 https://eurosurveillance.org/content/10.2807/1560-7917.ES.2017.22.26.30561

HEV case definitions in EU/EEA surveillance systems


Case definitions varied across countries, two countries with case definitions for chronic cases

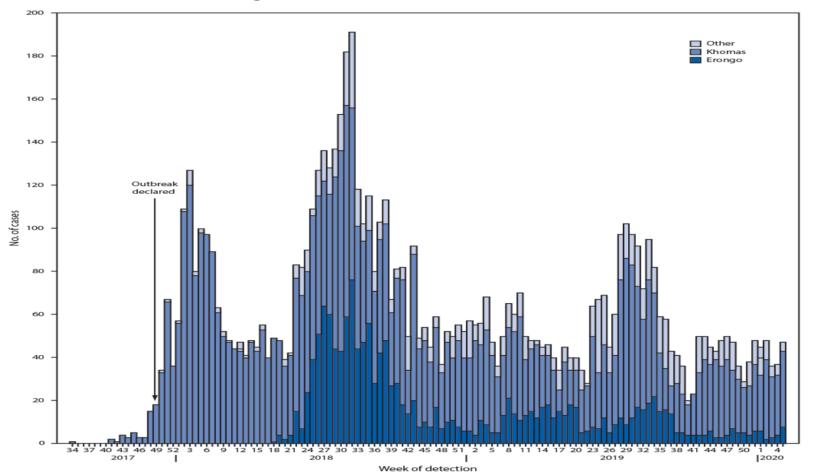
https://ecdc.europa.eu/en/publications-data/hepatitis-e-eueea-2005-2015 https://eurosurveillance.org/content/10.2807/1560-7917.ES.2017.22.26.30561


Number of laboratory-confirmed cases of HEV by year and start of surveillance, 22 EU/EEA Member States, 2005–2015*

10-fold increase 2005–2015 due locally acquired infections
78% of cases reported from France, Germany and UK

* Data available for: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Estonia, Finland, France, Germany, Hungary, Italy, Latvia, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, United Kingdom

Worldwide distribution of HEV



HEV genotypes

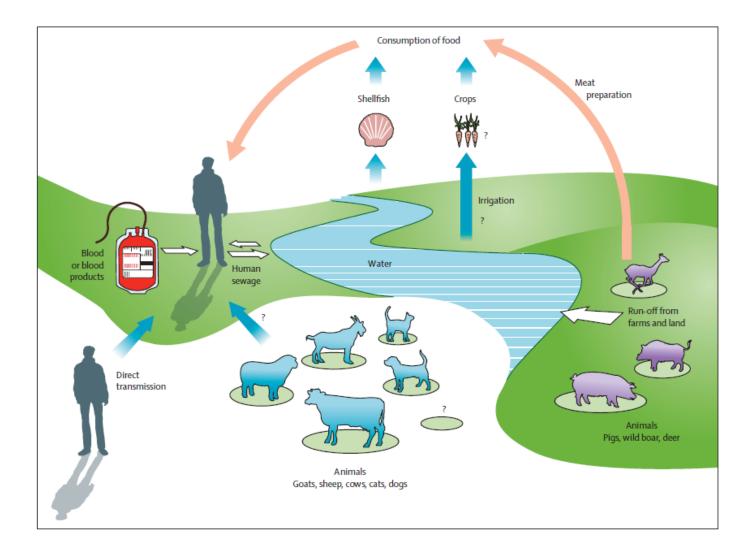
Characteristics	HEV 1 and 2	HEV3 and 4
Source of infection	Obligate human pathogen	Zoonotic Blood supply
Route of infection	Faecal-oral via infected water	Consumption of infected pork Blood supply
Outbreaks	Yes	No
Clinical attack rate	1:5	< 1:10
Demographics	Mainly affects young adults	Mainly affects older men Male:female ratio 3:1
Chronic infection	No	Yes in immunosuppressed individuals
Occurrence of second HEV infection	Yes	Yes
Neurological sequelae	Yes	Yes

Last HEV outbreak in Namibia

Number of hepatitis E cases (N = 7,247), by week of case detection and region of country* — Namibia, 2017-2020

https://www.cdc.gov/mmwr/volumes/69

HEV Infection During Pregnancy is Usually Fatal



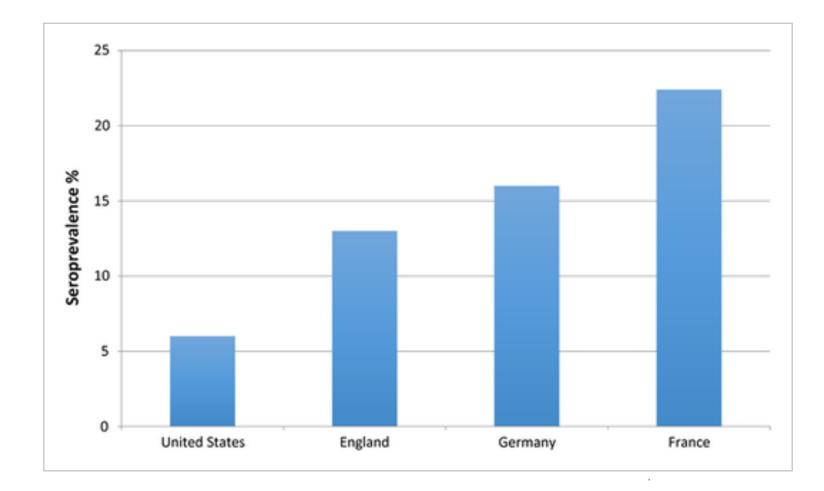
- Mortality rate up to 19%
- High perinatal mortality and prematurity rates

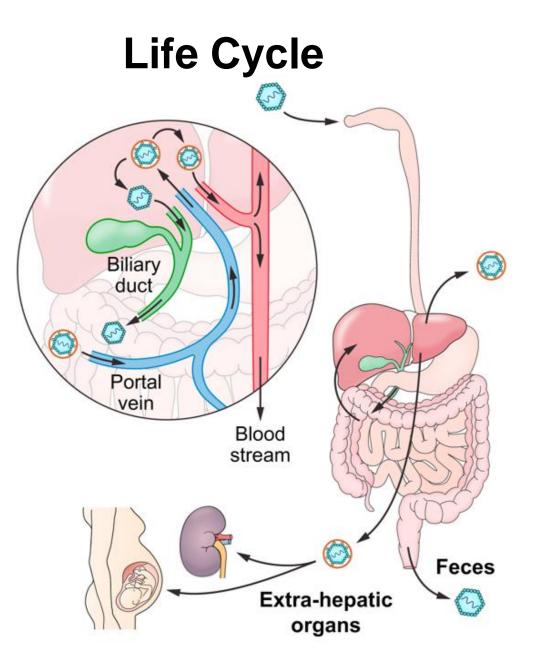
HEV genotypes

Characteristics	HEV 1 and 2	HEV3 and 4
Source of infection	Obligate human pathogen	Zoonotic Blood supply
Route of infection	Faecal-oral via infected water	Consumption of infected pork Blood supply
Outbreaks	Yes	No
Clinical attack rate	1:5	< 1:10
Demographics	Mainly affects young adults	Mainly affects older men Male:female ratio 3:1
Chronic infection	No	Yes in immunosuppressed individuals
Occurrence of second HEV infection	Yes	Yes
Neurological sequelae	Yes	Yes

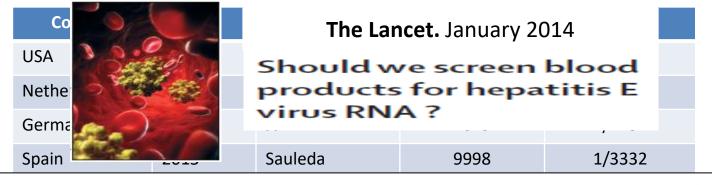
Routes of transmission of Hepatitis E

Kamar N, et al. Lancet 2012 30;379(9835):2477-2488


August 25, 2016


EUROPE'S NEW HEPATITIS PROBLEM

Europe vs. US



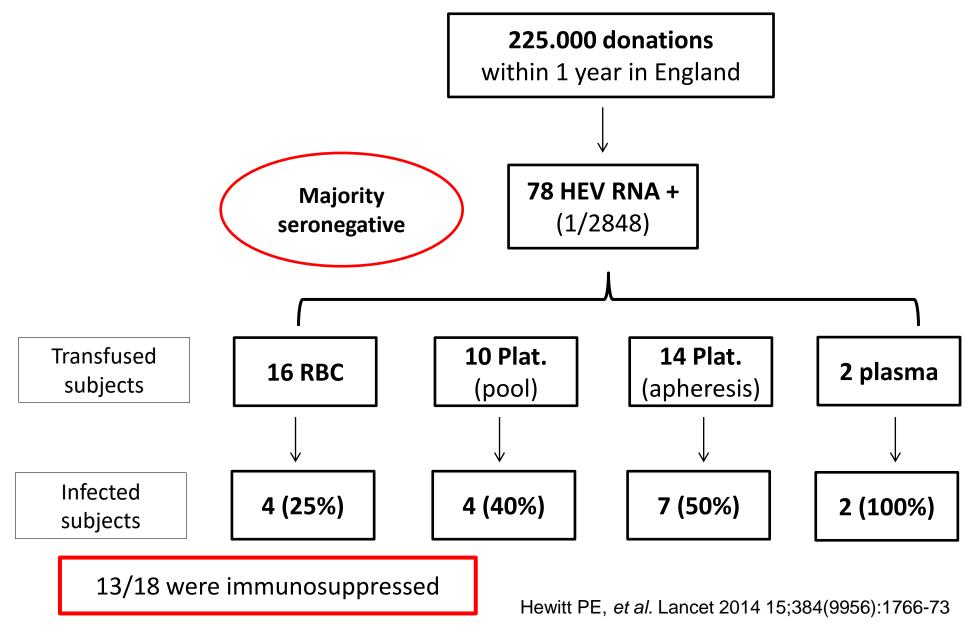
HEV seroprevalence

HEV RNA prevalence in blood donors

EASL Clinical Practice Guidelines on hepatitis E virus infection $\stackrel{\scriptscriptstyle \, \times}{}$

European Association for the Study of the Liver*

Netherlands 2	Recommendations	1/1321
	 Patients with abnormal LFTs after receiving blood prod- ucts should be tested for HEV. (A1) 	
	 EASL recommends that blood donor services screen blood donors for HEV by NAT, informed by local risk- assessment and cost-effectiveness studies, both of which may vary considerably by geographical location. (A1) 	

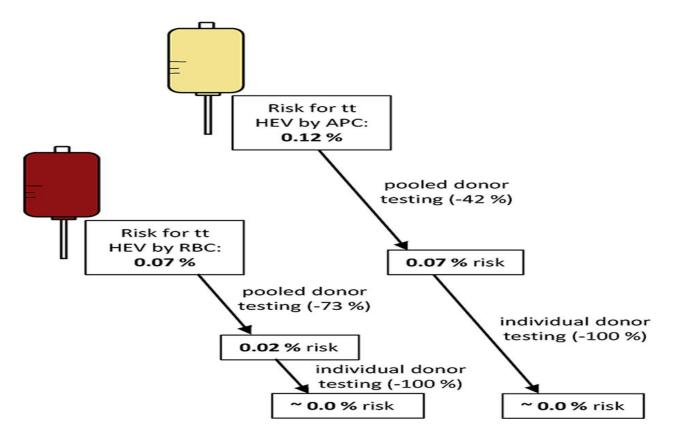

Cleland A, *et al.* Vox Sang 2013;105:283-9; Xu C, *et al.* Transfusion. 2013;53:2505-11; Juhl D, *et al.* Transfusion. 2014;54:49-56; Slot E, *et al.* Euro Surveill. 2013 ;18(31); Sauleda S, *et al.* Transfusion 2015;55:972-9; Ma L, *et al.* The Journal of international medical research 2015;43:257-262; Stramer SL, *et al.* Transfusion; 2016;56(2):481-8; Hogema BM, *et al.* Transfusion 2016;56(3):722-8.

HEV RNA prevalence in blood donors

Country	Year	Author	N Subjects	HEV RNA
USA	2013	Xu	1939	0/1939
Netherlands	2013	Slot	40176	1/2363
Germany	2014	Juhl	1019	1/4252
Spain	2015	Sauleda	9998	1/3332
China	2015	Ma	816	0/816
USA	2016	Stramer	18829	1/9500
Netherlands	2016	Hogema	59474	1/1321

Cleland A, *et al.* Vox Sang 2013;105:283-9; Xu C, *et al.* Transfusion. 2013;53:2505-11; Juhl D, *et al.* Transfusion. 2014;54:49-56; Slot E, *et al.* Euro Surveill. 2013 ;18(31); Sauleda S, *et al.* Transfusion 2015;55:972-9; Ma L, *et al.* The Journal of international medical research 2015;43:257-262; Stramer SL, *et al.* Transfusion; 2016;56(2):481-8; Hogema BM, *et al.* Transfusion 2016;56(3):722-8.

Hepatitis E in blood products


HEV and the blood supply

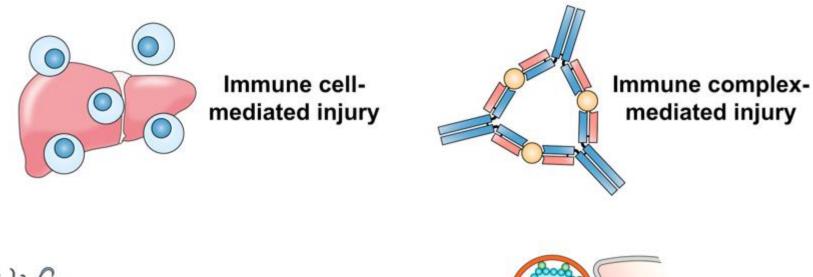
- HEV can also be transmitted iatrogenically
 - Through infected blood and blood products
- Universal, targeted or partial screening for HEV in donors:
 - Ireland, the UK, the Netherlands, and Japan
 - Germany: voluntary HEV screening by some blood transfusion companies

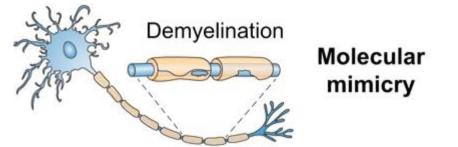
Recommendations Grade o	evidence 🔲 Grade	of recommendation
Patients with abnormal LFTs after receiving blood products should be tested for HEV	А	1
 Blood donor screening Blood donor services should screen blood donors for HEV by NAT, informed by local risk assessment and cost-effectiveness studies 	А	1

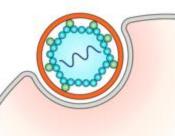
Risk of transfusion-transmitted hepatitis E virus infection from pool-tested platelets and plasma

31 of 16,236 donors (0.19 %) HEV RNA positive. 3 TBDs had virus loads 710 and 2000 IU/ml, a significant risk for tt hepatitis E

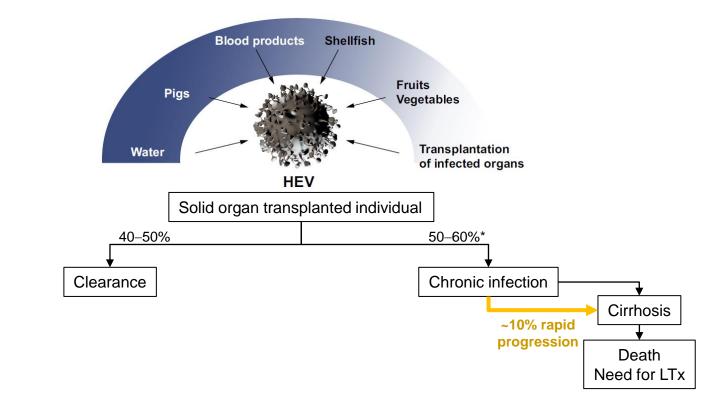
Screening of BDs with an LOD of 2000 IU/ml reduced the risk for tt HEV infection by about 73% for red blood cell concentrates whereas merely a 42% risk reduction was achieved for platelet and fresh frozen plasma transfusions

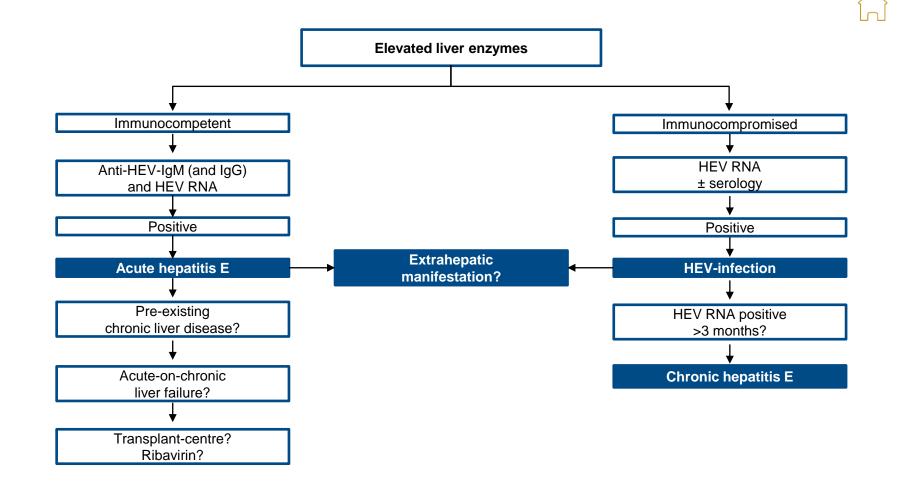

Cordes A et al. J Hepatol 2021


Neurologic manifestations in 200 acute hepatitis E cases (French National Reference Center)


	Immuno Competent N=137	lmmuno compromised N=63
Neurological symptoms	31 (22.6%)	2 (3.2%)
Neuropathic pain	13 (42%)	1 (50%)
Painless sensory disorders	8 (26%)	1 (50%)
Neuralgic amyotrophy	6 (19%)	0 (0%)
Guillain Barre syndrome	1 (3%)	0 (0%)
Meningitis	1 (3%)	0 (0%)
Diplopia	1 (3%)	0 (0%)

Pathogenesis




Direct toxicity

Transmission and disease progression in transplanted individuals

Diagnostic algorithm for HEV infection

EASL The Home of Hepatology

Serology and NAT testing are best used in combination, as a negative PCR does not exclude acute infection; serology is sometimes negative in immunosuppressed patients with chronic infection EASL CPG HEV. J Hepatol 2018;doi: 10.1016/j.jhep.2018.03.005 [Epub ahead of print]

Direct Tests

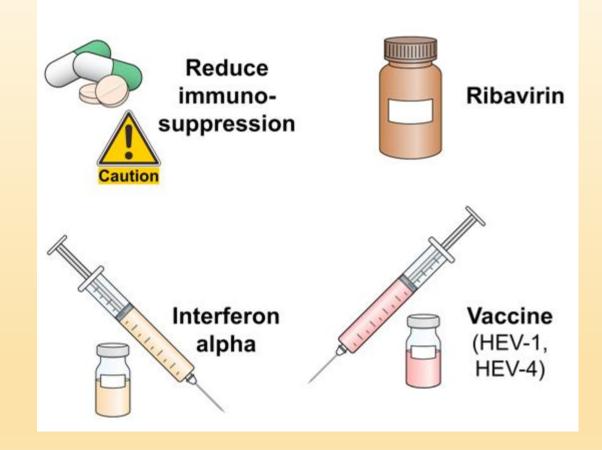
V HEV RNA: PCR or TMA, LoD 10-60 UI/ml

Abravanel, J Clin Microbiol 2013 ; Gallian, Transfusion 2017

Cobas 6800 Roche ®

Procleix Grifols ®,

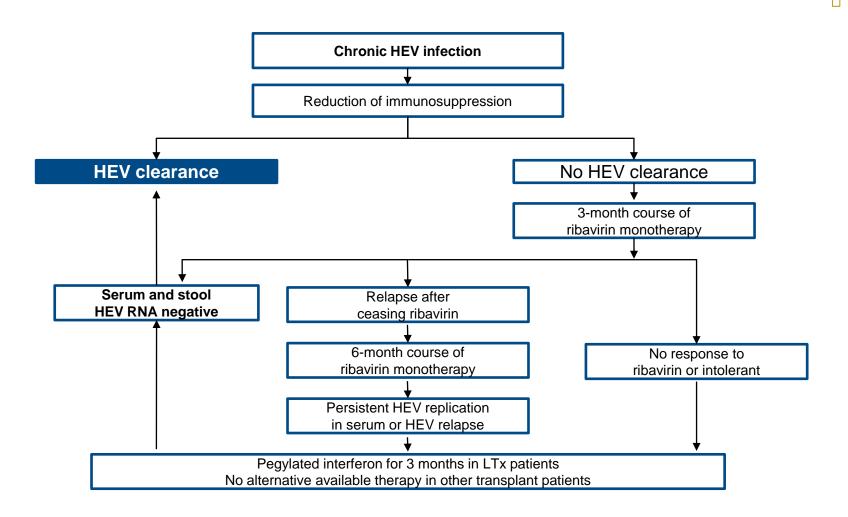
Panther Hologic ®


Qualititative

Real Star HEV V2 Altona® Quantitative

HEV Ag specificity : 100 % sensitivity: 91 % 80 % immunocompétent 94 % immunosuppressed analytical sensitivity < PCR or TMA Wen, J Clin Microbiol 2015 ; Trémeaux, J Clin Virol 2016 ; Behrendt, J Infect Dis 2016

Therapy and Prevention



Treatment of acute HEV infection

- Acute HEV infection does not usually require antiviral therapy*
- Most cases of HEV infection are spontaneously cleared
 - Some patients may progress to liver failure
 - Ribavirin
 - Early therapy of acute HEV may shorten course of disease and reduce overall morbidity

Recommendati	on	Grade of e	vidence 📕 Grade	of recommendation
Ribavirin tre chronic liver	atment may be considered in cases of severe acute hepat failure	itis or acute-on-	С	2

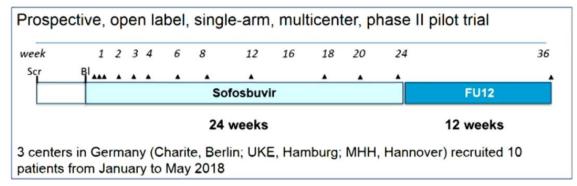
Treatment of chronic hepatitis E Role of Sofosbuvir

J Hepatol. 2017 Jan;66(1):242-243. doi: 10.1016/j.jhep.2016.09.014. Epub 2016 Oct 1.

Sofosbuvir shows antiviral activity in a patient with chronic hepatitis E virus infection.

Hepatology, 2018 Dec 14. doi: 10.1002/hep.30428. [Epub ahead of print]

Sofosbuvir and Ribavirin Eradication of Refractory Hepatitis E in an Immunosuppressed Kidney Transplant Recipient.


Drinane M1, Jing Wang X2, Watt K2.

van der Valk M¹, Zaaijer HL², Kater AP³, Schinkel J².

HepNet SofE study

Patients with chronic hepatitis E N=9

	HEV RNA decline median	HEV RNA decline >1log
Week 2	1.1 log	N=3
Week 12	0.76 log	N=3
Week 24 (EOT)	0.40 log	N=2
Follow-up 12 weeks	+ 0.11 log	N=0

0/9 patients achieved the primary endpoint

Prevention of HEV infection

- Consumption of undercooked meat from pigs, wild boar, and deer is a clear risk factor for HEV¹ infection in Europe
 - In vitro food preparation data inconclusive
- Risk of patient-to-patient transmission is poorly defined
 - Sexual transmission has been described in MSM
 - Stool contains high amounts of infectious HEV particles
 - Strict hygiene is required
- A vaccine has been developed but is only licensed in China

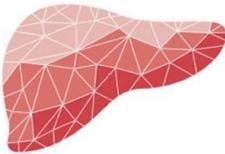
R	ecommendations	evidence 🔲 Grade	of recommendation
•	Immunocompromised individuals and those with chronic liver diseases should avoid consumption of undercooked meat (pork, wild boar and venison) and shellfish	В	1
•	Suggested that immunocompromised patients consume meat only if it has been thoroughly cooked to ≥70°C	В	2

Take home messages- Hepatitis E infection

Most common source of acute hepatitis worldwide

Increasing number of autochthonous cases

Rule out in all acute hepatitis!


Zoonosis (meat) and transfusion-transmitted

Extrahepatic manifestations, mainly neurological

Usually self-limited

Risk of chronic infection if immunosuppression

